

March 30, 2018 (revised January 22, 2019) Reference No. 013932-151

Mr. Brett McDaniel Remedial Project Manager Arizona Department of Environmental Quality 1110 West Washington Street Phoenix, Arizona 85007

Dear Mr. McDaniel:

Re: Effectiveness Report - 2017

20th Street Groundwater Treatment Facility 52nd Street Superfund Site Operable Unit 2 Area

Phoenix, Arizona

In accordance with Paragraph 9.2 of the Statement of Work (SOW) attached to the Second Amended Unilateral Administrative Order 98-15, as modified by the United States Environmental Protection Agency (EPA) letter of August 21, 2001, and in accordance with the requirements of Article 11 Paragraph 23 to the Consent Decree (CD) (filed July 13, 2010 in Federal District Court) and Paragraph 5 of the SOW, included as Appendix B of the CD, for the Interim Remedial Action between the Arizona Department of Environmental Quality (ADEQ), and on behalf of Honeywell International Inc. (Honeywell) and NXP USA, Inc. (NXP) (formerly Freescale Semiconductor, Inc.) (collectively the Companies), GHD Services Inc. (GHD) hereby submits two hardcopies and two electronic copies (included in the back of each hardcopy) of the Effectiveness Report - 2017 for the 20th Street Groundwater Treatment Facility, 52nd Street Superfund Site Operable Unit 2 (OU2) Area, Phoenix, Arizona.

The 2017 Effectiveness Report provides the effectiveness evaluation for the 20th Street Groundwater Treatment Facility for the period of January 1 through December 31, 2017, and includes the September 2001 baseline data to facilitate a comparison to pre startup conditions, as well as the September 2006 data when an expanded monitoring well network was available. The 2017 Operation & Maintenance activities for the 20th Street Groundwater Treatment Facility proceeded with no significant problems. The discharged water has always met all discharge standards for volatile organic compounds.

As noted in the recommendations, the Companies are preparing a proposed plan to provide a long-term response for the central portion of the Site that will also help mitigate any potential future impact to OU3. The Companies propose to schedule a conference call with the Agencies, when they become available, to discuss the proposed plan.

Please feel free to call the undersigned at (602) 216-7200 if you have any questions.

Sincerely,

GHD

Manfred Plaschke, R.G.

MP/trc/McDa-004

Encl.

cc: Jenn McCall, NXP (hardcopy, e-copy)

Tao Wu, Honeywell (e-copy)

Tom Suriano, Clear Creek (e-copy)

Rachel Loftin, EPA (e-copy) Robert Frank, CH2M (e-copy) Julie Riemenschneider, COP (CD)

Sue Kraemer, Aptim (2 hardcopies, 2 CDs)

Jeff Menkin, Hargis (e-copy)

OU2 Facility Site Copy (hardcopy)

Effectiveness Report - 2017

20th Street Groundwater Treatment Facility 52nd Street Superfund Site Operable Unit 2 Area Phoenix, Arizona

NXP USA, Inc. Honeywell International Inc.

GHD | 4747 North 22nd Street Suite 200 Phoenix Arizona 85016 USA 013932 | 151 | Report No 41 | March 30, 2018 Revised January 18, 2019

Executive Summary

The 52nd Street Superfund Site Operable Unit (OU) 2 Area groundwater remediation system located in Phoenix, Arizona consists of three groundwater extraction wells and a centralized treatment facility (the 20th Street Groundwater Treatment Facility) for removing volatile organic compounds (VOCs) (primarily trichloroethylene [TCE], tetrachloroethylene, 1,1,1-trichloroethane, and associated degradation products) from the extracted groundwater. Remediation system startup activities commenced in September 2001 and routine operations began in December 2001. This report evaluates the effectiveness of the 2017 OU2 Area operations with respect to the September 2001 Baseline Conditions and September 2006 (Second Baseline) Conditions. This report also presents results of water quality samples and water level measurements collected from June through December 2017, and a summary of operation and maintenance (O&M) activities from July through December 2017.

The objectives of the OU2 Area groundwater extraction system (GES), as set forth in the OU2 Record of Decision, are: 1) to contain the north-south width and depth of the observed VOC plume in groundwater in the area of Interstate-10 (I-10); 2) to treat the extracted groundwater prior to its beneficial end use; and 3) to reduce the VOC concentrations in the groundwater.

The extent of hydraulic containment resulting from continued operation of the OU2 GES was evaluated using multiple lines of evidence based on observed water level and water quality data and data trends, as well as system operations and the hydrogeologic setting. The containment evaluation presented herein indicates that the OU2 GES is effective at containing the groundwater plume in both alluvial aquifer subunits in the northern portion of the OU2 Area near I-10; however, the extent of capture is not interpreted to extend across the southern plume boundary as summarized below.

- The volume of water extracted from the OU2 GES exceeds the calculated natural flux of water through the plume area plus the additional safety factor recommended by EPA. However, the capture zone created by the OU2 extraction wells is no longer aligned with the center of the OU2 plume due to the reduction of plume width to the north. Because the plume centerline has shifted, a portion of the extracted water is being collected from an area north of the plume boundary rather than from the observed extent of impacted water.
- The maximum calculated capture zone width upgradient of the OU2 GES exceeds the calculated average plume width for the Salt River Gravel (SRG) and Basin Fill (BF). However, the observed capture zone created by the OU2 extraction wells is no longer aligned in the center of the OU2 plume, and therefore, the calculated width would be similarly off-set to the north and would not extend to the observed southern plume boundary due to a number of hydrogeologic factors outlined herein.
- Using information obtained from the expanded OU2 monitoring network, potentiometric surface
 maps were prepared for the SRG and BF subunits for September 2017. Groundwater elevation
 contours were also plotted in cross-sections. The plan view and cross-section groundwater
 elevation contours demonstrate that the OU2 Area GES is effective at containing the plume in
 the northern portion of the OU2 Area near I-10; however, hydraulic capture may not be

complete in the central portion of the Site and the southern extent of the capture zone is not projected to extend across the southern plume boundary.

- A comparison of the Baseline (September 2001), Second Baseline (September 2006), and 2016 to 2017 groundwater concentrations shows VOC concentrations continuing to decline in most of the OU2 Area groundwater monitoring well network wells. The TCE plume width continues to decrease to the north of the OU2 Area GES, reflecting complete hydraulic containment of the northern portion of the plume.
- Statistically significant decreasing VOC concentration trends (95 percent confidence) are
 observed in monitoring wells completed in the SRG and BF downgradient of the OU2 Area
 GES, supporting the interpretation that the OU2 GES has been effective at capturing mass
 historically and that the interim OU2 remedy is having a beneficial effect on alluvial aquifer
 water quality. However, recent VOC concentration trends in select downgradient monitoring
 wells in the southern OU2 Area suggest that full containment may not exist in the central portion
 of the Site in the vicinity of the Airport Ridge and across the southern plume boundary.
- The Companies have implemented short-term contingent remedial actions utilizing in-situ
 chemical oxidation in the central and southern portions of the Site and are developing a plan for
 long-term response for the central portion of the Site.
- The Companies are preparing a proposed plan to provide a long-term response for the central portion of the Site that will also help mitigate any potential future impact to OU3.

In 2017, approximately 568 million gallons (1,743 acre-feet) of water were treated at OU2 and put to beneficial use. From startup in 2001 through 2017, over 16 billion gallons (49,164 acre-feet) of water have been treated at OU2 and put to beneficial use for irrigation purposes by Salt River Project. All of the treated water met all of the discharge water quality standards for VOCs during 2017, consistent with every year of GES operation. The OU2 Area GES removed approximately 197 pounds of VOCs in 2017 (0.35 pounds per million gallons), and has removed an estimated total of 15,124 pounds of VOCs since startup (0.94 pounds per million gallons).

The 2017 O&M of the 20th Street Groundwater Treatment Facility proceeded with no significant problems. The system is operating as intended and is expected to continue to perform as required by the Consent Decree. Monthly operational efficiencies of the OU2 Area GES have consistently been in the upper 90th percentile range from startup of the system in September 2001 to the present.

Table of Contents

Intro	duction		1
1.1	Purpose	and Report Organization	1
1.2	System (Objectives	2
1.3	Backgro	und	2
	1.3.1 1.3.2 1.3.3	System Startup Operation and Maintenance Description of Groundwater Extraction and Treatment System	3
1.4	Effective	ness Evaluation Requirements	4
OU2	Area Con	ceptual Site Model	6
2.1	OU2 Are	ea Geology	7
2.2	OU2 Are	ea Hydrogeology	8
2.3	OU2 Are	ea GES Layout	10
Grou	ındwater M	Nonitoring and Evaluation - OU2 Area GES	11
3.1	Analytica	al Data and Data Validation	12
3.2	Groundw	vater Evaluation	13
	3.2.1 3.2.1.1 3.2.1.2 3.2.1.3 3.2.2 3.2.2.1 3.2.2.2 3.2.2.3 3.2.2.4	Groundwater Elevations September 2001 (Baseline) Groundwater Elevation Data September 2006 Groundwater Elevation Data September 2017 Groundwater Elevation Data Water Level Trends Baseline to September 2017 September 2006 to September 2017 September 2016 to September 2017 Vertical Gradients	
	1.1 1.2 1.3 1.4 OU2 2.1 2.2 2.3 Grou 3.1	1.1 Purpose 1.2 System (1.3 Backgro 1.3.1 1.3.2 1.3.3 1.4 Effective OU2 Area Con 2.1 OU2 Area 2.2 OU2 Area 2.3 OU2 Area 3.1 Analytica 3.2 Groundv 3.2.1 3.2.1.1 3.2.1.2 3.2.1.3 3.2.2 3.2.2.1 3.2.2.2	1.2 System Objectives 1.3 Background 1.3.1 System Startup 1.3.2 Operation and Maintenance 1.3.3 Description of Groundwater Extraction and Treatment System 1.4 Effectiveness Evaluation Requirements OU2 Area Conceptual Site Model 2.1 OU2 Area Geology 2.2 OU2 Area Hydrogeology 2.3 OU2 Area GES Layout Groundwater Monitoring and Evaluation - OU2 Area GES 3.1 Analytical Data and Data Validation 3.2 Groundwater Evaluation 3.2.1 Groundwater Elevations 3.2.1.1 September 2001 (Baseline) Groundwater Elevation Data 3.2.1.2 September 2017 Groundwater Elevation Data 3.2.2 Water Level Trends 3.2.1.1 Baseline to September 2017 3.2.2.2 September 2006 to September 2017 3.2.2.3 September 2016 to September 2017 3.2.2.3 September 2016 to September 2017

		3.2.3 3.2.3.1 3.2.3.2 3.2.3.3 3.2.4 3.2.4.1 3.2.4.2 3.2.4.2.1 3.2.4.3 3.2.4.4	Groundwater Chemistry Baseline (September 2001) Chemical Concentration Data	. 16 . 17 . 17 . 18 . 18 . 18
	3.3	Capture Z	one Evaluation	. 20
		3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.5.1 3.3.5.2 3.3.6	Water Budget/Flow Rate Calculations Capture Width Calculations Potentiometric Surface Maps Cross-Section Contours Groundwater Chemistry Trends Statistical Analysis Trends Downgradient Conclusions	. 22 . 23 . 23 . 25 . 25
4.	OU2	Area GES	Operations and Operational Assessment	. 29
	4.1	OU2 GES	Operations	. 29
		4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7	Operational Uptime and Shutdowns Set Point Changes Groundwater Treatment Process Sampling and Data Validation Other Sampling – Grand Canal GAC Operations and Change-outs UV Oxidation Treatment	. 30 . 31 . 31 . 31 . 31
	4.2	Operation	al Assessment	. 32
	4.3	Groundwa	ter Extraction	. 33
	4.4	Granular A	Activated Carbon Treatment	. 33
	4.5	Facility Di	scharge	. 34
	4.6		nal	
	4.7	Evaluation	of Scaling Tendency of Extracted Groundwater	. 35
5.	Maint	enance Wo	ork and Repair Summary	. 36
	5.1	Treatment	t Facility Maintenance	. 36
	5.2	Extraction	Well Maintenance	. 37
	5.3	Monitoring	g Well Maintenance	. 37
6.	Sumn	nary and C	onclusions	. 38
7.	Reco	mmendatio	ns	. 38
R	Refer	ancas		30

Figure Index

Figure 1.1	Site Location
Figure 1.2	GES Monitoring Well Network
Figure 2.1	Schematic Conceptual Site Model
Figure 2.2	Locations of Geologic Cross-Sections
Figure 2.3	Geologic Cross-Section A-A'
Figure 2.4	Geologic Cross-Section B-B'
Figure 2.5	Geologic Cross-Section C-C'
Figure 2.6	Geologic Cross-Section D-D'
Figure 3.1	Baseline Groundwater Elevations - September 2001, Salt River Gravel
Figure 3.2	Baseline Groundwater Elevations - September 2001, Basin Fill
Figure 3.3	Baseline Groundwater Elevations - September 2001, Bedrock
Figure 3.4	Groundwater Elevations - September 2006, Salt River Gravel
Figure 3.5	Groundwater Elevations - September 2006, Basin Fill
Figure 3.6	Groundwater Elevations - September 2006, Bedrock
Figure 3.7	Groundwater Elevations - September 2017, Salt River Gravel
Figure 3.8	Groundwater Elevations - September 2017, Basin Fill
Figure 3.9	Groundwater Elevations - September 2017, Bedrock
Figure 3.10	Change in Groundwater Elevation - September 2001 to 2017, Salt River Gravel
Figure 3.11	Change in Groundwater Elevation - September 2006 to 2017, Salt River Gravel
Figure 3.12	Change in Groundwater Elevation - September 2016 to 2017, Salt River Gravel
Figure 3.13	Vertical Gradients for Various Well Pairs - September 2017
Figure 3.14	Conceptualized Groundwater Contours - September 2017 - Cross-Section A-A'
Figure 3.15	Conceptualized Groundwater Contours - September 2017, Modified Cross-Section B-B'
Figure 3.16	Conceptualized Groundwater Contours - September 2017, Modified Cross-Section C-C'
Figure 3.17	Baseline TCE Concentrations - September 2001, Salt River Gravel
Figure 3.18	Baseline TCE Concentrations - September 2001, Basin Fill
Figure 3.19	Baseline TCE Concentrations - September 2001, Bedrock
Figure 3.20	TCE Concentrations - September 2006, Salt River Gravel
Figure 3.21	TCE Concentrations - September 2006, Basin Fill
Figure 3.22	TCE Concentrations - September 2006, Bedrock
Figure 3.23	TCE Concentrations - September 2017, Salt River Gravel
Figure 3.24	TCE Concentrations - September 2017, Basin Fill
Figure 3.25	TCE Concentrations - September 2017, Bedrock
Figure 3.26	TCE Distribution Geologic Cross-Section A-A'

Figure 3.27 TCE Distribution Geologic Cross-Section B-B'
Figure 3.28 TCE Distribution Geologic Cross-Section C-C'
Figure 3.29 TCE Distribution Geologic Cross-Section D-D'
Figure 3.30 Change in TCE Concentrations - September 2001 to September 2017, Salt River Gravel
Figure 3.31 Change in TCE Concentrations - September 2001 to September 2017, Basin Fill
Figure 3.32 Change in TCE Concentrations - September 2001 to September 2017, Bedrock
Figure 3.33 Change in TCE Concentrations - September 2006 to September 2017, Salt River Gravel
Figure 3.34 Change in TCE Concentrations - September 2006 to September 2017, Basin Fill
Figure 3.35 Change in TCE Concentrations - September 2006 to September 2017, Bedrock
Figure 3.36 Change in TCE Concentrations - September 2016 to September 2017, Salt River Gravel
Figure 3.37 Change in TCE Concentrations - September 2016 to September 2017, Basin Fill
Figure 3.38 Change in TCE Concentrations - September 2016 to September 2017, Bedrock
Figure 3.39 Extent of TCE in and Downgradient of Colluvium - September 2017

Table Index

Table 3.1	Groundwater Monitoring Well Network
Table 3.2	Summary of Monitoring Well Construction Details
Table 3.3	Groundwater Elevations - September 2001, 2006, 2016 and 2017
Table 3.4	Groundwater Sample Key – September and October 2017
Table 3.5	Summary of Well Development Data – September and October 2017
Table 3.6	Vertical and Horizontal Hydraulic Gradients for 2001, 2006, 2016, and 2017
Table 3.7	VOC Data for Salt River Gravel Wells - September 2001, 2006, 2016, and 2017
Table 3.8	VOC Data for Basin Fill Wells - September 2001, 2006, 2016, and 2017
Table 3.9	VOC Data for Bedrock and Colluvium Wells - September 2001, 2006, 2016, and 2017
Table 4.1	Process Summary - Volumes
Table 4.2	Process Summary - Run Times
Table 4.3	Summary of System 2017 Monthly Up-Time Percentages
Table 4.4	Summary of Extraction Well Flow Rate Set Point Changes
Table 4.5	Summary of Combined Influent Analytical Results - VOCs
Table 4.6	Summary of Combined Influent Analytical Results - Metals and General Chemistry
Table 4.7	Summary of Analytical Results - Facility Discharge
Table 4.8	Summary of Analytical Results - SRP Grand Canal Discharge
Table 4.9	Summary of Metals Analytical Results - SRP Grand Canal Discharge
Table 4.10	Summary of General Chemistry Analytical Results - SRP Grand Canal Discharge
Table 4.11	Summary of Boron Analytical Results - SRP Discharge and Grand Canal
Table 4.12	Summary of Analytical Results - Primary GAC Adsorber Effluent

Table of Contents

1.1 Purpose and Report Organization 1.2 System Objectives 1.3 Background 1.3.1 System Startup 1.3.2 Operation and Maintenance 1.3.3 Description of Groundwater Extraction and Treatment System 1.4 Effectiveness Evaluation Requirements 2. OU2 Area Conceptual Site Model 2.1 OU2 Area Geology 2.2 OU2 Area Hydrogeology 2.3 OU2 Area GES Layout 3. Groundwater Monitoring and Evaluation - OU2 Area GES 3.1 Analytical Data and Data Validation 3.2 Groundwater Evaluation 3.2.1.1 September 2001 (Baseline) Groundwater Elevation Data 3.2.1.2 September 2006 Groundwater Elevation Data 3.2.1.3 September 2017 Groundwater Elevation Data 3.2.1.3 September 2017 Groundwater Elevation Data	1
1.3 Background 1.3.1 System Startup 1.3.2 Operation and Maintenance 1.3.3 Description of Groundwater Extraction and Treatment System 1.4 Effectiveness Evaluation Requirements 2. OU2 Area Conceptual Site Model 2.1 OU2 Area Geology 2.2 OU2 Area Hydrogeology 2.3 OU2 Area GES Layout 3. Groundwater Monitoring and Evaluation - OU2 Area GES 3.1 Analytical Data and Data Validation 3.2 Groundwater Evaluation 3.2.1 Groundwater Elevations 3.2.1.1 September 2001 (Baseline) Groundwater Elevation Data 3.2.1.2 September 2006 Groundwater Elevation Data	1
1.3.1 System Startup 1.3.2 Operation and Maintenance 1.3.3 Description of Groundwater Extraction and Treatment System 1.4 Effectiveness Evaluation Requirements 2. OU2 Area Conceptual Site Model 2.1 OU2 Area Geology 2.2 OU2 Area Hydrogeology 2.3 OU2 Area GES Layout 3. Groundwater Monitoring and Evaluation - OU2 Area GES 3.1 Analytical Data and Data Validation 3.2 Groundwater Evaluation 3.2 Groundwater Evaluation 3.2.1 Groundwater Elevations 3.2.1.1 September 2001 (Baseline) Groundwater Elevation Data 3.2.1.2 September 2006 Groundwater Elevation Data	2
1.3.2 Operation and Maintenance 1.3.3 Description of Groundwater Extraction and Treatment System 1.4 Effectiveness Evaluation Requirements 2. OU2 Area Conceptual Site Model 2.1 OU2 Area Geology 2.2 OU2 Area Hydrogeology 2.3 OU2 Area GES Layout 3. Groundwater Monitoring and Evaluation - OU2 Area GES 3.1 Analytical Data and Data Validation 3.2 Groundwater Evaluation 3.2.1 Groundwater Elevations 3.2.1.1 September 2001 (Baseline) Groundwater Elevation Data 3.2.1.2 September 2006 Groundwater Elevation Data	2
1.4 Effectiveness Evaluation Requirements 2. OU2 Area Conceptual Site Model 2.1 OU2 Area Geology 2.2 OU2 Area Hydrogeology 2.3 OU2 Area GES Layout 3. Groundwater Monitoring and Evaluation - OU2 Area GES 3.1 Analytical Data and Data Validation 3.2 Groundwater Evaluation 3.1 Groundwater Evaluation 3.2 Groundwater Evaluation 3.2 Groundwater Elevations 3.2.1 September 2001 (Baseline) Groundwater Elevation Data 3.2.1.2 September 2006 Groundwater Elevation Data	3
2.1 OU2 Area Geology	
2.2 OU2 Area Hydrogeology 2.3 OU2 Area GES Layout 3. Groundwater Monitoring and Evaluation - OU2 Area GES 3.1 Analytical Data and Data Validation 3.2 Groundwater Evaluation 3.2.1 Groundwater Elevations 3.2.1.1 September 2001 (Baseline) Groundwater Elevation Data 3.2.1.2 September 2006 Groundwater Elevation Data	6
2.3 OU2 Area GES Layout 3. Groundwater Monitoring and Evaluation - OU2 Area GES 3.1 Analytical Data and Data Validation 3.2 Groundwater Evaluation 3.2.1 Groundwater Elevations 3.2.1.1 September 2001 (Baseline) Groundwater Elevation Data 3.2.1.2 September 2006 Groundwater Elevation Data	7
3.1 Analytical Data and Data Validation 3.2 Groundwater Evaluation 3.2.1 Groundwater Elevations 3.2.1.1 September 2001 (Baseline) Groundwater Elevation Data 3.2.1.2 September 2006 Groundwater Elevation Data	8
3.1 Analytical Data and Data Validation 3.2 Groundwater Evaluation 3.2.1 Groundwater Elevations 3.2.1.1 September 2001 (Baseline) Groundwater Elevation Data 3.2.1.2 September 2006 Groundwater Elevation Data	10
3.2.1 Groundwater Elevations 3.2.1.1 September 2001 (Baseline) Groundwater Elevation Data 3.2.1.2 September 2006 Groundwater Elevation Data	11
3.2.1 Groundwater Elevations	12
3.2.1.1 September 2001 (Baseline) Groundwater Elevation Data	13
3.2.2 Water Level Trends 3.2.2.1 Baseline to September 2017 3.2.2.2 September 2006 to September 2017 3.2.2.3 September 2016 to September 2017 3.2.2.4 Vertical Gradients	13 14 14 14 15 15

List of Acronyms

ADEQ Arizona Department of Environmental Quality

Agencies ADEQ and EPA

AZPDES Arizona Pollution Discharge Elimination System

BF Basin Fill

bgs below ground surface
BWWW backwash wastewater

CaCO₃ calcium carbonate
°C degrees Celsius

Calgon Carbon Corporation

CCA Clear Creek Associates

CD Consent Decree

cis-1,2-DCE cis 1,2 Dichloroethene

COC contaminant of concern

Companies Honeywell International Inc. and NXP USA, Inc.

COP City of Phoenix

CRA Conestoga-Rovers & Associates

CSM Conceptual Site Model

D&M Dames & Moore

EMA Errol L. Montgomery & Associates Inc.

EPA United States Environmental Protection Agency

EWN middle extraction well

EWN north extraction well

EWS south extraction well

Evoqua Water Technologies LLC

FCV flow control valve

ft feet or foot

ft/day feet or foot per day ft/ft feet or foot per foot

ft/min feet or foot per minute

ft² square feet

ft³/day cubic feet per day

GAC granular activated carbon

GES Groundwater Extraction System

GHD GHD Services Inc.

gpd gallon(s) per day

gpm gallon(s) per minute

HSU Hydrostratigraphic Unit

I-10 Interstate 10

K hydraulic conductivity

LAU lower conglomerate unit (or lower alluvial unit)

LI Langelier Index

MAU middle alluvial unit

MCL maximum contaminant level

mg/L milligram(s) per liter

OU Operable Unit

O&M Operation and Maintenance

PCE Tetrachloroethylene

PLC Programmable Logic Controller

Q estimated natural flow rate

ROD Record of Decision

SCADA Supervisory Control and Data Acquisition

Siemens Water Technologies

SOW Statement of Work

SRG Salt River Gravel

SRP Salt River Project

TCE Trichloroethylene

TCZ target capture zone

UAO Unilateral Administrative Order

UAU upper alluvial unit

μg/L microgram(s) per liter

UV ultraviolet

VOC volatile organic compound

VSD variable speed drive

WSRV West Salt River Valley

1,1-DCA 1,1-Dichloroethane

1,1-DCE 1,1-Dichloroethene

1,1,1-TCA 1,1,1-trichloroethane

1. Introduction

1.1 Purpose and Report Organization

This 2017 Effectiveness Report documents the operation, maintenance, and monitoring activities for the period from January 1, 2017 to December 31, 2017, for the Operable Unit (OU) 2 Area Groundwater Extraction System (GES) of the 52nd Street Superfund Site (Site) interim OU2 Area remedy in Phoenix, Arizona. This report has been prepared by GHD Services Inc. (GHD)¹ on behalf of Honeywell International Inc. and NXP USA, Inc. (NXP, formerly Freescale Semiconductor, Inc.) (collectively, the Companies), in accordance with the requirements of Article 11 Paragraph 23 of the Consent Decree (CD) (filed July 13, 2010 in Federal District Court) and Paragraph 5 of the Statement of Work (SOW) included as Appendix B of the CD for the Interim Remedial Action between the Arizona Department of Environmental Quality (ADEQ) and the Companies for the continued operation of the OU2 GES.

This is the sixteenth annual effectiveness report prepared during the OU2 Area GES operation and maintenance (O&M) period. The purpose of the report is to document the effectiveness of the OU2 Area groundwater extraction and treatment system and to demonstrate plume containment using multiple lines of evidence. Previous operation and/or effectiveness reports were submitted to ADEQ and the United States Environmental Protection Agency (EPA) (collectively, the Agencies) as follows:

- 1. The startup period from September 2001 to December 2001 is documented in the Startup Report (Conestoga-Rovers & Associates [CRA], 2002a)
- 2. The fifteen previous annual effectiveness evaluations for 2002 through 2016 are documented in the Effectiveness Reports (CRA, 2003, 2004a, 2005, 2006, 2007, 2008, 2009a, 2010a, 2011b, 2012, 2013, 2014a, and 2015; and GHD 2016 and 2017a).

The 2017 Effectiveness Report is organized as follows:

- Section 1.0 presents the purpose and organization of the report, the background of the project, a brief description of the OU2 Area groundwater extraction and treatment system, a summary of the 20th Street Groundwater Treatment Facility construction, commissioning and startup activities, and the requirements for the annual effectiveness reporting.
- 2. Section 2.0 presents an overview of the OU2 Area conceptual site model (CSM), including geology and hydrogeology and GES layout.
- Section 3.0 presents an OU2 Area groundwater evaluation comparing Baseline Conditions (September 2001) to September 2017, September 2006 (Second Baseline) to September 2017, and September 2016 to September 2017, including a hydraulic containment analysis.
- 4. Section 4.0 presents a summary of the 20th Street Groundwater Treatment Facility operations and operational assessment and evaluation.

¹ Note that Conestoga-Rovers & Associates (CRA) changed its name to GHD Services Inc. on July 1, 2015.

- 5. Section 5.0 presents a summary of the maintenance work and repairs related to the OU2 Area groundwater extraction and treatment system.
- 6. Section 6.0 presents the summary and conclusions for the continued operation of the OU2 Area groundwater extraction and treatment system.
- 7. Section 7.0 presents the recommendations for activities for the following year.
- 8. Section 8.0 presents a list of references used in this report.

1.2 System Objectives

In accordance with the OU2 Record of Decision (ROD), the OU2 Area GES is designed to fully contain the north-south width and depth of volatile organic compound (VOC)-impacted groundwater observed in the area of Interstate 10 (I-10). A secondary objective set forth in the ROD is to reduce contaminant concentrations in the alluvial aquifer upgradient of the extraction wells. Hydraulic containment is maintained by pumping three extraction wells that lower the groundwater table to create a "cone of depression." This cone of depression creates a north-south oriented parabolic-shaped hydraulic capture zone. All groundwater located upgradient of, and within the capture zone, will eventually be captured by the extraction wells. The extracted groundwater is treated to remove VOCs and to meet the discharge standards specified in Section 1.3.2 of the O&M Manual (CRA, 2004b; 2011a) prior to discharge to the Grand Canal (see Section 4.5).

1.3 Background

The interim OU2 Area remedy consists of three groundwater extraction wells and a central treatment facility (the 20th Street Groundwater Treatment Facility) for removing VOCs, primarily trichloroethylene (TCE), tetrachloroethylene (PCE), 1,1,1-trichloroethane, and associated degradation products from the extracted groundwater. The treated groundwater is provided to Salt River Project (SRP) for beneficial re-use.

The OU2 Area is bounded approximately by Roosevelt Street on the north, Buckeye Road on the south, the OU1 Area groundwater capture zone (approximately 46th Street) on the east, and 18th Street on the west, as shown on **Figure 1.1**. The agency-approved groundwater monitoring well network for demonstrating capture is shown on **Figure 1.2**, and is discussed in more detail in Section 3.0. Additionally, the OU1 Area groundwater remedy has been operational since 1992 and captures VOC-impacted groundwater upgradient of the OU2 GES (Clear Creek Associates [CCA], 2017).

1.3.1 System Startup

After completion of construction and commissioning activities, the startup period for the 20th Street Groundwater Treatment Facility commenced on September 26, 2001, with the initiation of 24-hour operation of the entire system (including the ultraviolet [UV] oxidation system and all nine pairs of granular activated carbon [GAC] adsorbers) by CRA (now known as GHD), on behalf of the Companies. Startup activities were completed and routine operations initiated on December 13, 2001. The Companies submitted notification of completion of startup activities and

initiation of routine operations to the EPA in a letter dated December 13, 2001. Details of the startup activities are provided in the January 11, 2002 Startup Report (CRA, 2002a).

1.3.2 Operation and Maintenance

In a letter to the EPA dated November 13, 2001, the Companies selected CRA as the supervising contractor for the O&M of the 20th Street Groundwater Treatment Facility. CRA prepared and submitted the O&M Manual to the EPA on January 25, 2002, in accordance with the Amended Unilateral Administrative Order (UAO), which was approved by the EPA in 2003 (EPA, 2003). The O&M Manual was revised in July 2004 to reflect the operational and monitoring changes, and the updated O&M Manual (CRA, 2004b) was approved by the EPA in August 2004 (EPA, 2004). The UAO was terminated and replaced with the ADEQ CD in January 2011 and the O&M Manual was revised in February 2011 to be consistent with the ADEQ CD, and to reflect the operational and monitoring changes since 2004 (CRA, 2011a).

1.3.3 Description of Groundwater Extraction and Treatment System

The 20th Street Groundwater Treatment Facility was constructed with the following major components:

- 1. Three groundwater extraction wells identified as:
 - North extraction well (EWN)
 - Middle extraction well (EWM)
 - South extraction well (EWS)
- 2. Below-ground extracted groundwater force main from the extraction wells to the treatment facility.
- 3. Central treatment facility with granular aqueous phase carbon adsorption (and UV oxidation, if required).
- 4. Below-ground treated water force main from the treatment facility to the surface water discharge into the SRP Grand Canal.

The extraction well pumps are sized to pump the groundwater from the extraction wells, through the treatment facility, and then to the SRP Grand Canal discharge point, without the need for interim storage and pumping facilities. The table below identifies features of the extraction wells.

Groundwater Extraction Well	Well Depth (feet below ground surface [ft bgs])	Extraction Pump Type	Pump Intake Depth (ft bgs)
EWN	240	Line Shaft Turbine	222
EWM	226	Line Shaft Turbine	197
EWS	214	Submersible	185

The operation of the extraction, treatment, and discharge systems is controlled by programmable logic controllers (PLCs) to allow automation of the system under normal operating conditions, to

shut down the system or portions of the system based on predetermined operational parameters, and to start up the system based on predetermined operational parameters.

The treatment system is designed with fail-safe features, including high water level sensors, motor overload sensors, and a high force main pressure switch that shuts down the treatment system, if required. A local alarm system indicates unusual system conditions to operations personnel. During unstaffed shifts, an automatic telephone dialer system provides a remote indication of conditions that require immediate attention.

The main PLC is housed in the electrical room of the treatment building, and is connected to a Supervisory Control and Data Acquisition (SCADA) system in the office of the treatment building. The purpose of the main PLC is to provide a visual control interface, and for trending and automatic logging of data at the treatment building. All control status, system monitoring, and alarms are displayed on the SCADA system. In addition, operational data are logged on the SCADA system to allow evaluation of system performance, and to generate data for reporting requirements. In case of a PLC failure, hardwired interlocks of major alarms will shut down the treatment system.

Details of the OU2 Area groundwater extraction and treatment system are provided in the O&M Manual (CRA, 2004b), revised in 2011 (CRA, 2011a).

1.4 Effectiveness Evaluation Requirements

This report was prepared to meet the requirements of the CD as described below. The CD was filed in Federal Court on July 13, 2010, and became effective on January 14, 2011, when EPA terminated the UAO (EPA, 2011).

The CD requires annual effectiveness reports be prepared for each year of operation of the 20th Street Groundwater Treatment Facility.

Article XI. Paragraph 23 of the CD states the following:

"Unless ADEQ and the Working Party Settling Defendants agree to different dates, on or before March 31st of each year, Work Party Settling Defendants shall submit an Effectiveness Report for the period October 1 through September 30 in accordance with Section 5 of the SOW. Settling Defendants shall review the adequacy of the monitoring well network in the Annual Effectiveness Report and the need, if any, for new groundwater monitoring wells for demonstrating containment. ADEQ may request the installation of additional monitoring wells in the event that it is determined that new groundwater monitor wells are necessary to achieve the objectives of this Consent Decree. If Settling Defendants object to any request for additional groundwater monitor wells made by ADEQ pursuant to this Paragraph, they may seek dispute resolution pursuant to Section XIX [Dispute Resolution]."

Appendix B: SOW: Item 2. Operations and Maintenance, C. Groundwater Containment Performance Standard states the following:

"Except as provided for in Section XXI (Force Majeure) of the Consent Decree, Settling Defendants shall establish and maintain a capture zone across the entire width and depth of the contaminant plume in the area of Interstate 10.

On an annual basis, as set forth in Section 5 of this SOW, Settling Defendants shall perform a hydraulic capture analysis to demonstrate groundwater containment using water elevation and water quality data, including data trends for both, collected from, at a minimum, the monitoring well network (the "OU2 Monitoring Well Network") identified in Section 7.1.1 of the O&M Manual [Monitoring Well Network]. Settling Defendants may utilize additional evaluations, including analytical and/or numeric modeling, to support the demonstration of hydraulic capture."

Appendix B: SOW: Item 5 Effectiveness Reporting states the following:

"On or before March 31st of each year, Settling Defendants shall submit an Effectiveness Report that includes an evaluation of the analytical and hydraulic monitoring data collected the previous year, beginning October 1st through September 30th, in order to demonstrate compliance with the Performance Standards for groundwater treatment and groundwater containment. The Effectiveness Reports shall include:

- a summary of the treatment system performance during the prior calendar year including total volume of water treated and estimated mass of VOCs removed for the year and since operations started;
- ii. a summary of major maintenance and repair work conducted on the treatment system;
- iii. water elevation and TCE concentration contour maps in plan view overlain by interpreted flow paths;
- iv. water elevation and TCE concentration data in cross-section view;
- v. a comparison of the September water elevations and TCE concentrations to the September 2001 baseline groundwater conditions set forth in the Baseline Groundwater Monitoring Report, July to November, 2001 – Operable Unit 2 Area;
- vi. a comparison of the September water elevations and TCE concentrations to September 2006 water elevations and TCE concentrations;
- vii. a comparison of the water elevations and TCE concentrations collected in September of the current reporting year to the same data collected in the prior year;
- viii. an evaluation of hydraulic capture utilizing water elevation and water quality data including data trends for both, collected from the OU2 Monitoring Well Network;
- ix. hydrographs and VOC time series graphs for each monitoring well in the OU2 Monitoring Well Network; and
- x. recommendations, if any, for modifying the OU2 Treatment Facility operations or the OU2 Monitoring Well Network or the groundwater monitoring program.

The Effectiveness Report will also include the results of any additional evaluations used by Settling Defendants to support the demonstration of hydraulic containment."

Section 7.4.2 of the revised O&M Manual states the following:

"7.4.2 LONG TERM EFFECTIVENESS REPORTS

Section 1.3.2 presents the treated water discharge criteria for the Site. The groundwater remediation performance standards for the OU2 Area are summarized in Section 7.1. The groundwater remediation performance standards and the treated water discharge criteria form the basis for evaluating the performance of the groundwater remediation program.

There are three specific effectiveness evaluations to be performed during the operation of the groundwater remediation system to verify that the specified performance standards are being achieved. These evaluations are as follows.

- Monitoring Well and Extraction Well Sampling and Analysis Program: Monitoring and evaluating the quality of groundwater in the plume to determine the effectiveness of the groundwater remediation system in reducing the concentration of site-specific contaminants;
- ii) Hydraulic Monitoring Program: Monitoring the groundwater flow pattern to verify the containment of the groundwater plume; and
- iii) Discharge System Sampling Program: Monitoring the treated water discharged to the Grand Canal to verify compliance with the discharge criteria at the point of compliance"

2. OU2 Area Conceptual Site Model

A brief discussion of the geologic, hydrogeologic, and groundwater conditions of the OU2 Area is presented in this section. Descriptions of the geology and hydrogeology of the OU2 Area are provided in Sections 2.1 and 2.2, respectively.

The OU2 Area GES is located at the western (downgradient) extent of the OU2 Area. The OU2 Area contains a complex unconfined (water table) aquifer system termed "the alluvial aquifer." The alluvial aquifer consists of a two-hydrostratigraphic subunit system; namely the Salt River Gravel (SRG) and the Basin Fill (BF). The Companies determined the SRG/BF contacts based on the recognition that there is variability in the SRG deposits such that the SRG/BF contact is not always the first fine-grained unit below thick sequences of gravels/sands. The SRG deposits were formed in a higher energy depositional environment with rounded, exotic clasts in the gravel to cobble-size that have been transported over greater distances. The BF was formed in a lower energy depositional environment with a greater percentage of fine and angular clasts. Thus, the contact was based on the first fine-grained unit that no longer contained more than a trace of gravel or cobbles and/or the gravel was angular beneath it.

Groundwater quality and hydrostratigraphic data collected within OU2, including data collected in 2015, 2016, and 2017 associated with the installation of eight additional groundwater monitoring wells and one soil boring in OU2 (CRA, 2014b) have been incorporated into the CSM. The schematic CSM is presented on **Figure 2.1**.

2.1 OU2 Area Geology

The OU2 Area extraction wells are installed into Late Tertiary and Quaternary alluvial sediments. These deposits comprise approximately the upper 50 to 240 ft (from east to west) of geologic material above the sedimentary/igneous bedrock in this area of the Salt River Valley. The unconsolidated deposits of the Salt River Valley have been stratigraphically and/or hydrostratigraphically classified by several entities over the years. The classification has been refined and updated as more subsurface information became available. Reeter and Remick (1986) subdivided the unconsolidated deposits into three stratigraphic units (from oldest to youngest) - the lower conglomerate unit (or, lower alluvial unit [LAU]), the middle alluvial unit (MAU), and the upper alluvial unit (UAU). Anderson, Freethey and Tucci (1990) informally redefined these deposits from a hydrostratigraphic standpoint (from oldest to youngest) – pre-Basin and Range sediments, lower BF, upper BF, and stream alluvium. Hammett and Herther (1995) further refined the classification of these deposits into three stratigraphic units (from oldest to youngest): lower BF, upper BF, and alluvium.

Figure 2.2 shows the locations of five geologic cross-sections that were constructed to provide a depiction of the vertical and horizontal changes in subsurface geology in the OU2 Area. **Figures 2.3** through **2.6** present geologic cross-sections in north-south and east-west orientations of four of the five cross-sections depicted in **Figure 2.2**.

There are three primary mid-Tertiary bedrock units underlying the alluvial fill sediments: the Camels Head Formation, Tempe Formation (also called the Tempe Beds), and unnamed volcanic rocks (Bales, et al., 1986). The Camels Head Formation is composed of coarse sedimentary breccia and conglomerate, with thin interbeds of conglomeratic sandstone (Reynolds and Bartlett, 2002). Most sedimentary breccias are debris-flow deposits, but some represent huge landslides and rock-avalanche deposits. The overlying Tempe Formation is finer-grained, consisting mostly of siltstone and sandstone. Aquifer testing of wells completed in bedrock does not show any difference in permeability between the crystalline plutonic rocks and the cemented sedimentary rocks, indicating that the permeability of both is derived primarily by fractures.

The Phoenix area lies within the Basin and Range Province, which is typified by gently sloping regional normal faults (Reynolds and Bartlett, 2002). Along the regional normal fault, smaller imbricate faults occur, forming stacked half-graben style topography, typical of the Basin and Range Province. Locally, the half-graben topography can be seen in the OU2 Area in rows of semi-parallel bedrock ridges. The bedrock ridges that have formed in the OU2 Area have been named the Airport Ridge and the Honeywell Ridge.

Review of cores from the OU2 borings show that soils described as clayey gravel generally consist of angular gravel- and cobble-size clasts in a clay and silt matrix. These soils are interpreted as either being the result of a mudflow or debris-flow, or could represent locally-derived colluvium, both of which are close to the source area. In many cases, the lithology of these clayey gravels is very similar to the underlying consolidated Camels Head Formation, and has been described in some logs as weathered bedrock. The relatively steep slopes of the bedrock areas preclude the development of a thick residuum or weathered bedrock layer. Instead, as bedrock weathers, a thin layer of colluvium develops and is transported downslope. Finally, soils described as clay, sandy

clay, or gravelly clay most likely represent the result of mudflows, based on their color (red and brown) and proximity to bedrock rises.

Locally, at OU2 monitoring well NW17-S, colluvium is encountered at a higher elevation and is thicker than elsewhere at the OU2 Area GES. The genesis of the colluvium around monitoring well NW17-S likely occurred due to Basin and Range faulting in the area. The thick colluvium in the area of NW17-S is likely the result of a mass slump or mudflow, or a series of slump/mudflows that collected in or near the half-graben. Following deposition, the area was likely faulted, dropping the surrounding area hundreds of feet. This idea is supported by the location of the Airport Ridge and the adjacent much deeper basin (10,000+ ft) (Brown and Poole, 1989) to the west (in OU3). The proximity of NW17-S to the edge of the basin suggests that it is near a blind normal fault, located at or very near the edge of the fault block.

The oldest unconsolidated sedimentary deposits in the OU2 Area are found in the BF. The BF is characterized by the presence of abundant silt and sand with lesser amounts of clay and gravel. These deposits are more compacted than the overlying SRG (Hammett and Herther, 1995). The BF deposits are generally finer-grained and more consolidated and cemented than the SRG. Additionally, they are locally derived. However, according to Reynolds and Bartlett (2002), the BF has four facies that were evident in numerous OU2 logs as follows:

- Sand facies: sand with variable amounts of silt and fine pebbles.
- Fine-grained facies: dominantly silt and sand, with lesser amounts of clay and gravel.
- Basal unit: angular pebbles and gravel in fine matrix of silt, clay, and sand. Clasts can be granite, meta-rhyolite, and coarse quartz (locally derived). Sedimentary clasts include Camels Head and Tempe Formations.
- Conglomerate facies: laterally discontinuous lens, gravelly to conglomeratic material.

In the vicinity of the OU2 Area GES, BF deposits range in combined thickness from 50 to 190 ft.

The SRG is described as well-rounded gravel, cobbles, and boulders in a sandy matrix. SRG is considered to be a fluvial deposit associated with the ancient Salt River (Reynolds and Bartlett, 2002). The SRG generally consists of multi-colored, well-rounded gravel, cobbles, and boulders in a multi-colored sandy matrix with minor silt and clay layers. There is typically little or no calcite cement. In the vicinity of the OU2 Area GES, SRG deposits range in thickness from 110 to 170 ft.

The uppermost unit is the Quaternary alluvium. This unit is a mixture of sand, silt, and clay, with varying amounts of gravels. Locally, above this unit is artificial fill material. Overall, this material ranges in thickness from 2 to 20 ft, and does not affect the hydraulic characteristics of the OU2 Area groundwater because it is well above the groundwater table.

2.2 OU2 Area Hydrogeology

The Site is within the West Salt River Valley (WSRV), which is a structural basin within the Basin and Range province of Arizona, formed during the early to mid-Tertiary period. The WSRV Sub-Basin was then filled with mid-Tertiary sedimentary units, including the Camels Head Formation and Tempe Formation. During mid- to late-Tertiary time, rapid uplift and erosion of

Precambrian rocks and mid-Tertiary sedimentary units resulted in a series of tilted fault blocks, bounded by northwest-trending faults. In the Tempe Buttes area, a pediment called the Papago Park Pediment was formed on the up-thrown fault block that had been cut by several smaller faults, and has been eroded to a number of islands protruding above a relatively gently sloping surface (Bales, et al., 1986). Mid-Tertiary Camels Head and Tempe Formations that comprise the fault blocks have an average dip of 45 degrees to the southwest, with evidence of decreasing dips upward across the Camels Head - Tempe Formation interval (Bales, et al., 1986). Based on subsurface investigations in the OU1 and OU2 areas, the Papago Park Pediment extends to the west to the vicinity of the OU2 GES. Depth-to-bedrock data collected in the OU2 Area indicate that remnants of the tilted fault blocks, similar to the islands described above, exist on the pediment surface and are now buried by Quaternary sediments of the UAU. The bedrock ridges, referred to herein as the Honeywell Ridge and Airport Ridge, exist as eroded remnants of the tilted fault blocks of Camels Head Formation on the pediment. Between these bedrock rises, broad northwest-trending troughs were cut into the Camels Head Formation and Tempe Formation. These broad troughs were subsequently in-filled with the late-Tertiary UAU sediments. The older and deeper portion of the UAU, referred to as the BF, was probably derived in place, or was transported very locally. The BF was deposited across much of the eastern part of the WSRV. It predominantly contains angular to sub-rounded clasts that were derived from the local bedrock exposures. In some locations in the OU2 area, the BF contains exotic sand-size to cobble-size clasts. Concurrently, and subsequent to the deposition of the BF, the surface of the locally derived BF sediments was locally eroded by the Salt River.

There are two primary Hydrostratigraphic Units (HSUs) in the OU2 Area: The SRG and BF (collectively, the alluvial aquifer). As described above, the SRG is a coarse-grained sand and gravel unit deposited by the ancestral Salt River, and exhibits relatively high permeability. Because of its finer-grained composition, the BF is inherently less permeable than the SRG. Both subunits are hydraulically connected in the OU2 Area GES.

For purposes of this report and the CSM, the general hydrostratigraphy classifications, as outlined in the table below, and from the individual well screen database, were used to generate maps in this report.

Hydrostratigraphic Subunit Name	Description	Relative Hydraulic Properties
SRG	Coarse-grained sand, gravel, cobbles, and occasional boulders	High K
BF	Interbedded sand, gravel, and silt/clay, locally interbedded sand and silt/clay with fine-grained silt/clay marker beds	Intermediate K
Bedrock/Colluvium	Camels Head and Tempe Formation	Low K, except if fractured
Note: K - hydraulic	conductivity	

For each HSU, there is a wide range of hydraulic properties. The BF has a reported K ranging from 1 to 60 ft per day (ft/day) due to the fine-grained composition of this subunit (Reynolds and Bartlett, 2002). The SRG has a reported higher K, ranging from 200 to 450 ft/day (Reynolds and Bartlett, 2002). As discussed in the Capture Zone Evaluation (Section 3.5) of the

2015 Effectiveness Report (GHD, 2016), the K value in the SRG tends to the lower range because the water levels in the SRG have decreased by approximately 30 ft since 1997 (the year of the previous aquifer testing on the OU2 GES area). This groundwater level reduction has dewatered the more permeable portions of the SRG. To further assess this impact, an aquifer recovery analysis was conducted during the annual OU2 GES system shutdown in early 2016. Based on that analysis, the estimated current SRG hydraulic conductivity is 250 ft/day in the OU2 GES Area.

Under non-pumping conditions, vertical gradients between SRG and BF deposits are negligible in most areas in the vicinity of the OU2 Area GES. In some places, particularly west of the OU2 system, and further west in the OU3 Area, hydraulic heads observed in deeper BF can differ from heads measured in SRG. The influence of the OU2 system on hydraulic heads in deeper BF deposits does not appear to extend as far west as does the effect on hydraulic heads in SRG. This head difference in deeper BF deposits probably derives from the fact that deep BF has considerable silt and clay, making the unit semi-confined instead of unconfined, as with the SRG.

Additionally, the two bedrock ridges described above influence groundwater flow in both the SRG and BF and transect the OU2 Area in a southeast/northwest direction. The Honeywell Ridge is located approximately 1 mile east of the OU2 Area GES, and the Airport Ridge extends through the OU2 Area GES near extraction well EWS. These ridges affect groundwater movement within the alluvial aquifer by channelizing flow across the Airport Ridge. The Airport Ridge has a significant effect on groundwater movement in the southern portion of OU2 and likely inhibits groundwater movement flowing towards the west near the OU2 Area GES, due to its low permeability. A thin veneer of colluvium is present on the margins of these ridges. From a hydraulic perspective, the colluvium materials have a much lower conductivity than the alluvial aquifer subunits.

The occurrence of colluvium around monitoring wells NW15, NW17, and NW18 appears to be different than other colluvium occurrences in the region. At these locations groundwater flow in the colluvium behaves like flow in bedrock (i.e., groundwater moves through discrete zones or fractures, rather than as a porous media). A semi-qualitative short-term pumping test and falling head tests were conducted in March 2010 at monitoring well NW18-M, and falling head tests were conducted at monitoring well NW17-S, to determine the hydraulic properties of colluvium in the area of each well tested. Based on the results from the falling head tests, monitoring well NW17-S has an approximate hydraulic conductivity range of 2.1 x 10⁻³ to 2.7 x 10⁻³ ft per minute (ft/min) (3.0 to 3.9 ft/day), and monitoring well NW18-M has an approximate hydraulic conductivity range of 1.6 x 10⁻³ to 1.8 x 10⁻³ ft/min (2.3 to 2.6 ft/day).

2.3 OU2 Area GES Layout

As mentioned in Section 1.3, the groundwater remediation system has three extraction wells (EWN, EWM, and EWS) located in a north-south alignment (**Figure 1.1**), and an associated groundwater monitoring well network (**Figure 1.2**). The extraction well alignment and locations were selected, in part, on modeling by Dames & Moore (D&M), as outlined in the Final (100%) Design Report (CRA, 1999). The three extraction wells are constructed of 20-inch diameter well casing and are screened across the SRG and BF (see **Figure 2.3**) with the following screened intervals:

- 100 to 220 ft bgs in EWN
- 86 to 206 ft bgs in EWM
- 94 to 194 ft bgs in EWS

All extraction wells were drilled to the bedrock contact. Lithologically, the proportions of the three principal alluvial units at the extraction well locations are as follows:

- EWN has 145 ft of SRG (includes approximately 10 ft of alluvium at ground surface), underlain by 95 ft of BF deposits.
- EWM has 145 ft of SRG, underlain by 85 ft of BF deposits.
- EWS has 150 ft of SRG, underlain by 55 ft of BF deposits.

During the installation of EWS, Errol L. Montgomery & Associates, Inc. (EMA) noted that formation plugging by bentonite from the drilling fluid may have occurred, and that this may have caused the lower well efficiency observed during initial testing of the well. EWS was redeveloped to remove as much of the drilling mud as possible to improve its hydraulic efficiency. However, no significant improvement was observed (EMA, 2002), indicating that the low efficiency of the well is primarily a function of the formation rather than the construction of the well.

Following installation of each extraction well, EMA conducted aquifer testing consisting of step-discharge and constant discharge rate tests. The test data were evaluated by EMA using the extraction wells and observation wells. The test results give a range of bulk operative transmissivities from 280,000 gallons per day (gpd)/ft (37,400 square ft [ft²]/day) for well EWS, to 300,000 gpd/ft (40,000 ft²/day) for wells EWN and EWM (EMA, 2002). Based on an average saturated aquifer thickness of 150 ft (calculated during the 2000 aquifer tests), the hydraulic conductivities calculated ranged from 1,900 gpd/ft² (254 ft/day) for well EWS to 2,000 gpd/ft² (267 ft/day) for wells EWM and EWN. The 7-day aquifer test conducted by D&M (D&M, 1993) at well DM518 (approximately 1 mile upgradient of the OU2 Area GES), yielded a hydraulic conductivity of 1,550 gpd/ft² (207 ft/day), slightly less than the values obtained by EMA for the OU2 Area GES.

Groundwater Monitoring and Evaluation - OU2 Area GES

Groundwater monitoring and sampling for the reporting period was performed at the frequency specified in Section 7.0 of the revised O&M Manual. On April 6, 2017, NXP on behalf of the Companies requested the Hydraulic Groundwater Quality reporting frequency be changed from quarterly to semi-annual (December to May and June to November), and ADEQ approved this request in an April 12, 2017 letter. The December 2016 through May 2017 reporting period was submitted to the Agencies in a letter report dated July 15, 2017 (GHD, 2017b). June through November 2017 groundwater data are presented herein.

The 2017 OU2 Area GES monitoring well network, presented in Section 7.1.1 of the revised O&M Manual, was selected utilizing existing monitoring wells supplemented by monitor wells installed in

the vicinity of the predicted capture zone. The network includes monitoring wells on either side of the predicted capture zone sufficient to demonstrate the effectiveness of capture, as well as additional monitoring wells installed upgradient of the GES to evaluate regional groundwater concentrations. The groundwater monitoring well network is presented on **Figure 1.2** and summarized in **Table 3.1**. Screened intervals for the OU2 Area GES monitoring wells, piezometers, and extraction wells are provided in **Table 3.2**. The groundwater monitoring well network, detailed in **Table 3.1**, was established in the O&M Manual (CRA, 2002b), revised based on comments from the EPA in 2003 and 2004 (CRA, 2004b), and to be consistent with the CD, is presented in the Revised O&M Manual (CRA, 2011a). Additional wells installed in agreement with the Agencies as part of the groundwater monitoring network after 2004, including the wells installed in 2014, are also included on **Figure 1.2** and in **Tables 3.1** and **3.2**.

Groundwater monitoring is completed in accordance with Section 7.1.2, Section 7.1.3, Appendix A (Quality Assurance Project Plan [QAPP]), and Appendix D (Health and Safety Plan [HASP]) of the revised O&M Manual (CRA 2011).

Groundwater levels in the monitoring wells and piezometers, measured during the second half of 2017, are presented in **Table 3.3**.

3.1 Analytical Data and Data Validation

As outlined above, groundwater quality monitoring and sampling for the second half of 2017 were performed from September 1 through October 5, 2017, on select wells in the OU2 GES groundwater monitoring well network. In September and early October 2017, a total of 66 groundwater samples were collected that included five duplicates, three matrix spike/matrix spike duplicates (MS/MSDs), and four field blanks. Additionally, seven rinse blanks and nine trip blanks were collected by GHD during this period. The September and October 2017 Field Sample Key summarizes the GHD sample identification numbers and additional sample details, and is presented in **Table 3.4** and in **Appendix A**.

Prior to purging, a water level measurement was obtained from each monitoring well using an electronic water level indicator. Groundwater quality sampling and hydraulic monitoring of the monitoring wells were conducted in accordance with the procedures in the Revised O&M Manual (CRA, 2011). Water quality field parameters, including pH, temperature, and specific conductivity, along with color and clarity of the purged water were monitored during purging in accordance with the Revised O&M Manual, Field Sampling Plan (FSP), and QAPP. After approximately three well volumes were purged from the monitoring well (except for specific wells as identified below), a groundwater sample was collected for analysis of select volatile organic compounds (VOCs) using EPA Test Method 8260B.

Wells NW04-S, NW06-S, NW07-S, and NW08-S could not be purged of three well volumes, even at a low pumping rate of <0.5 gallons per minute (gpm). Therefore, they were purged dry after one well volume. After approximately 12 hours, these wells had at least 80 percent recovery, and a sample was collected at that time from each well with a disposable bailer.

Well EW22-S had approximately 2 feet of water in its casing, and could not accommodate a pump without immediate cavitation. Therefore, a sample was collected from this well with a disposable bailer.

A summary of the monitoring well development data for GHD sampled wells is presented in **Table 3.5** for September and October 2017. Samples collected by GHD were analyzed by SGS Accutest Laboratories (Arizona Department of Health Services [ADHS] Certificate #AZ0762) in Phoenix, Arizona. Laboratory analytical reports are included as **Appendix A** (CD for the Agencies only). A data quality assessment and validation for September and October 2017 are included in **Appendix B**. All analytical data were found to exhibit acceptable levels of accuracy and precision, with the exception of a high relative percent difference (RPD) for 1,1-dichloroethene and cis-1,2-dichloroethene for the MS/MSD sample collected from well NW17-S. As a result, the associated detected sample results for NW17-S were qualified as estimated.

3.2 Groundwater Evaluation

This section presents an evaluation and verification of the OU2 Area GES' effect on containing the VOC groundwater plume at approximately 20th Street.

3.2.1 Groundwater Elevations

This section presents the hydrogeologic conditions, namely groundwater elevation data, for September 2001 (Baseline), September 2006 (a second comparison period added to meet the requirements of Paragraph 5 of the SOW and Section IX, Paragraph 23, in the CD due to the significant expansion of the monitoring well network in 2005), and September 2016 (previous year) to September 2017. Groundwater elevation data for these three periods are presented in **Table 3.3** for wells located in the OU2 Area. Water elevation changes from Baseline to September 2017, from September 2006 to September 2017, and September 2016 to September 2017 are also presented in **Table 3.3**. Water level elevations are depicted on monitoring well hydrographs presented in **Appendix C**. Groundwater elevation data for the entire OU2 Area for September 2001 and September 2017 are presented on figures in **Appendix D**. Additionally, at the request of the Agencies, March 2017 water levels (when the OU2 GES was off [due to flows in the Salt River] are included in figures in **Appendix D**.

3.2.1.1 September 2001 (Baseline) Groundwater Elevation Data

OU2 Area groundwater elevations for September 2001 are presented on **Figure 3.1** (SRG), **Figure 3.2** (BF), and **Figure 3.3** (Bedrock), and are summarized in **Table 3.3**. These groundwater elevations represent baseline conditions prior to initiating routine operations of the OU2 Area GES. Groundwater flow directions in SRG and BF are generally westerly in the vicinity of the OU2 Area GES.

In September 2001, groundwater was encountered within SRG at a depth of approximately 80 ft bgs in the vicinity of the OU2 Area GES and the OU2 monitoring well network that existed at the time (CRA, 2002b, 2002c). The horizontal hydraulic gradients in the SRG (for September 2001) ranged from 2.2 x 10⁻³ to 4.9 x 10⁻³ ft per foot (ft/ft) (see **Table 3.6**). Monitoring well hydrographs are in **Appendix C**.

The initial depths to groundwater in the OU2 Area GES extraction wells, shortly after installation in June 2000, were 87 ft below top of casing for EWN, and 78 ft below top of casing for both EWM and EWS.

3.2.1.2 September 2006 Groundwater Elevation Data

September 2006 groundwater elevations for the OU2 Area are presented on **Figure 3.4** (SRG), **Figure 3.5** (BF), and **Figure 3.6** (Bedrock), and summarized in **Table 3.3**. The horizontal hydraulic gradients in the SRG (for September 2006) ranged from 1.9 x 10⁻³ to 7.4 x 10⁻³ ft/ft (see **Table 3.6**). The September 2006 period is presented in accordance with the OU2 CD. Although the September 2006 data represent groundwater conditions after 5 years of operations, additional water elevation data are available for the period from the expanded OU2 groundwater monitoring network. The September 2006 water elevation contour maps depict a cone-of-depression in the SRG and BF that centers on the OU2 GES, with the resulting capture zone extending beyond the width of the observed plume in SRG and BF deposits.

3.2.1.3 September 2017 Groundwater Elevation Data

September 2017 groundwater elevations for the OU2 Area are presented on **Figure 3.7** (SRG), **Figure 3.8** (BF), and **Figure 3.9** (Bedrock), and summarized in **Table 3.3**. The horizontal hydraulic gradient in the SRG (September 2017) ranged from 1.8 x 10⁻³ to 7.6 x 10⁻³ ft/ft (see **Table 3.6**) in the vicinity of the OU2 Area GES. Away from the OU2 Area GES, both upgradient and downgradient, the magnitude and direction of the hydraulic gradients were similar to baseline conditions. In the immediate vicinity of the GES, however, hydraulic gradients have increased, and these gradients have been locally reversed to the west of the OU2 Area GES. The September 2017 water elevation contour maps depict a cone-of-depression in the SRG and BF that is near the center on the OU2 GES, with the resulting capture zone extending from north of OU2 GES monitoring well EW-07 to approximately monitoring well NW-11M in the SRG, and from north of OU2 GES monitoring well NW12-D to just south of monitoring well NW16-D in the BF deposits.

3.2.2 Water Level Trends

Groundwater monitoring well hydrographs, precipitation data, and a tabulated listing of water level measurements are presented in **Appendix C** (Table C.1). Each January, the OU2 Area GES is shut down for maintenance of the Grand Canal. This maintenance period typically extends into late January or early February each year. When the OU2 Area GES is restarted, groundwater elevations in the vicinity of the OU2 Area GES generally return to pre-shutdown water levels in less than 30 days, which indicates a quick return to hydraulic containment.

Water level trends are discussed below for 2001 (Baseline) to September 2017, for September 2006 (Second Baseline) to September 2017, and for September 2016 to September 2017.

3.2.2.1 Baseline to September 2017

Since September 2001 (Baseline), groundwater levels have declined an average of 19.5 ft in monitoring wells located in the OU2 Area due to operations of the OU2 Area GES and the continuing regional drought (**Table 3.3**). Greater groundwater declines, up to approximately 27 ft,

are observed in select OU2 monitoring wells (EW07, NW03, PZ01-S/D, PZ02-S/D, and TEW01), which are located in close proximity to the OU2 Area extraction wells. The principal decline in groundwater levels occurred from 2001 through approximately 2004. From 2005 through 2010, groundwater levels were generally increasing, although the recovered water level elevations were lower than the 2001 baseline elevations. Comparison of 2010 and 2017 groundwater levels indicates an overall decline in water elevations. However, between September 2016 and September 2017, water level elevations exhibited an average increase as a result of significant water releases into the Salt River channel (facilitating groundwater recharge) from approximately February 15, 2017 until March 15, 2017. Despite the variability in the regional groundwater level elevations from 2001 through 2017, the regional groundwater flow direction remains unchanged in the OU2 Area away from the GES, with groundwater generally flowing from east to west with localized variations due to local hydrogeologic conditions, such as in and around the bedrock ridge areas. Localized groundwater flow directions have also been altered by operation of the OU2 Area GES, with groundwater flow directed towards the OU2 Area extraction wells, including a reversal of the groundwater flow direction immediately downgradient of the three extraction wells.

Geologic cross-sections A-A' through D-D' (**Figures 2.3** through **2.6**) illustrate the overall decline in groundwater levels between the 2001 and 2017 monitoring periods. **Figure 3.10** shows the change in groundwater elevation between September 2001 and September 2017 in plan view.

3.2.2.2 September 2006 to September 2017

Between September 2006 and September 2017, groundwater levels fluctuated, with an overall average decrease of 13 ft in monitoring wells located within the OU2 Area (**Table 3.3**). Groundwater elevations increased throughout the OU2 Area in 2010 and again in early 2017 due to the surface water releases into the Salt River channel. However, overall decreases have been occurring since approximately June 2011 to present due to the extended regional drought. **Figures 2.3** through **2.6** show the difference in water levels between September 2006 and September 2017 in cross-section view. **Figure 3.11** shows the change in groundwater elevation between September 2006 and September 2017 in plan-view.

3.2.2.3 September 2016 to September 2017

Between September 2016 and September 2017, groundwater levels increased an average of approximately 1.6 ft in SRG-screened monitoring wells in the OU2 Area (**Table 3.3**). **Figure 3.12** shows the changes in groundwater elevation between September 2016 and September 2017 in the SRG. During the period from September through November 2017, groundwater levels in the BF of the OU2 area increased an average of 1.2 feet. Refer to **Appendix C** for individual well water level hydrographs and trends.

3.2.2.4 Vertical Gradients

Groundwater extraction effects on vertical flow in the immediate area surrounding EWN and EWM can be observed by reviewing data from the two nested monitoring well locations (PZ01-S/D and PZ02-S/D). These nested pairs each consist of an SRG and a Bedrock well. The nested pairs are located between extraction wells EWN and EWM, and measure the vertical gradient caused by operation of the extraction system. In September 2001, prior to the start of pumping, the

groundwater elevations were similar, with both of the PZ01-S/D and PZ02-S/D well nests exhibiting a slight upward and slight downward vertical gradient of 3.4 x 10⁻⁴ ft/ft and -1.6 x 10⁻⁴ ft/ft, respectively (**Table 3.6**). These very low vertical gradients are indicative of a predominantly horizontal flow regime, as they are at least an order of magnitude lower than the horizontal gradient. For the September 2017 water levels, the PZ01-S/D well nest exhibited a slight downward vertical gradient of -2.2 x 10⁻³ ft/ft, and the PZ02-S/D well nest exhibited a slight upward vertical gradient of 2.0 x 10⁻⁴ ft/ft. The vertical gradients observed between SRG and Bedrock at PZ01 and PZ02 are so small that any differences between them (or potentially the direction and magnitude of gradients measured at these sites themselves) may be attributable to measurement error in water level elevations. For September 2017 water levels, a slight upward vertical gradient of 5.7 x 10⁻⁴ ft/ft was noted for the NW18-S (SRG) and NW18-M (colluvium) well nests.

Further away from the extraction wells, vertical gradients between groundwater in SRG and BF vary with location. **Figure 3.13** presents the September 2017 spatial distribution of vertical gradients surrounding the OU2 Area GES in SRG and BF, respectively. Conceptualized groundwater elevation contours and relative vertical gradient changes to the OU2 GES are depicted on cross-sections A-A', B"-B", and C-C' on **Figures 3.14, 3.15**, and **3.16**, respectively. Vertical gradients to the south and southeast of the extraction wells and east of 20th Street vary in direction and range from -3.4 x 10⁻³ ft/ft (NW09-D/D2) (downward gradient) to -1.1 x 10⁻² ft/ft (NW23-S/D) (downward gradient). Vertical gradients to the southwest of the extraction wells and west of 20th Street range from -5.6×10⁻³ ft/ft (NW07-S/M) (downward in SRG only) to 3 x 10⁻² ft/ft (OU312-M/D) (upward). Vertical gradients to the northwest of the extraction system are range from -3.3x10⁻³ ft/ft (NW04-M/D) (downward gradient) to 8.7 x 10⁻² ft/ft (OU314-M/D) (upward gradient).

As expected, the effect of the OU2 Area GES on vertical gradient direction and magnitude declines with distance from the extraction wells. Vertical gradients reverse direction from slightly-downward (NW06-S/D) within the OU2 GES capture zone to slightly-upward (NW07-M/D), west and outside of the OU2 GES capture zone. A consistently strong upward vertical gradient direction is observed moving further to the west (OU312-M/D) of the OU2 GES.

3.2.3 Groundwater Chemistry

Tabulated summaries of the groundwater analytical data for Baseline (September 2001), September 2006, and September 2017 are provided in **Table 3.7** (SRG), **Table 3.8** (BF), and **Table 3.9** (Bedrock and Colluvium).

3.2.3.1 Baseline (September 2001) Chemical Concentration Data

TCE concentration data for the OU2 Area GES for September 2001 are presented on **Figure 3.17** (SRG), **Figure 3.18** (BF), and **Figure 3.19** (Bedrock), including the TCE plume boundary interpretation (based on the maximum containment level [MCL] of 5 micrograms per liter [µg/L]) for 2001. The 2001 groundwater plume boundary represents baseline conditions prior to startup of the OU2 Area GES. Baseline concentration figures for the individual contaminants of concern (COCs) are included in **Appendix D**.

3.2.3.2 September 2006 Chemical Concentration Data

TCE concentration data for the September 2006 sampling event in the OU2 Area are presented on **Figure 3.20** (SRG), **Figure 3.21** (BF), and **Figure 3.22** (Bedrock), and have been used to create a contoured TCE plume boundary interpretation for 2006. The September 2006 period is presented in accordance with the OU2 CD. The September 2006 data represent groundwater conditions after 5 years of OU2 GES operations, and includes additional water quality data for the period from the expanded OU2 groundwater monitoring network.

3.2.3.3 September 2017 Chemical Concentration Data

TCE concentration data for the September 2017 sampling event in the OU2 Area are presented on **Figure 3.23** (SRG), **Figure 3.24** (BF), and **Figure 3.25** (Bedrock). These data have been used to create a contoured TCE plume boundary interpretation for 2017.

Cross-sections with TCE concentration data for 2001, 2006, and 2017 are provided on **Figure 3.26** (Cross-Section A-A'), **Figure 3.27** (Cross-Section B-B'), **Figure 3.28** (Cross-Section C-C'), and **Figure 3.29** (Cross-Section D-D').

Tabulated listings of the groundwater analytical data for the compounds included on **Figures 3.17** through **3.29** are provided in **Table 3.7** (SRG), **Table 3.8** (BF), and **Table 3.9** (Bedrock and Colluvium). In addition, 1,1-dichloroethane (1,1-DCA), 1,1-dichloroethene (1,1-DCE), cis 1,2-dichloroethene (cis 1,2-DCE), and TCE analytical data for 2001 and 2017 have been posted on figures in **Appendix D** for SRG, BF, and Bedrock for the entire OU2 Area. The figures for SRG and BF include the TCE plume boundary interpretation for 2001 and 2017.

The TCE concentrations in the monitoring wells screened within the colluvium (NW15-S, NW17-S, and NW18-M) are also posted on **Figure 3.39**. These results are presented in **Table 3.9**. TCE distributions in the colluvium-screened wells (NW15-S, NW17-S, and NW18-M) are separate from the alluvial aquifer contaminant distributions. The occurrence of the colluvium as it pertains to OU2 is discussed briefly in Section 2.2.

3.2.4 Contaminant Concentration Trends

Although changes in water quality occur more slowly and over a longer timeframe than water elevation responses in the OU2 Area, noticeable and significant water quality changes have occurred since the 2001 Baseline period. Decreasing TCE concentration trends are observed in the OU2 extraction wells. The anticipated concentration trend in a given monitoring well is partially a function of the monitoring well location; however, decreasing concentration trends are also observed in a number of monitoring wells located upgradient and downgradient of the OU2 Area GES, independent of its operation, consistent with the overall concentration decreases in the larger, regional Site. Since start-up, the width of the plume (north and south) has decreased in the vicinity of the OU2 Area GES in both SRG and BF. The changes in TCE concentrations from Baseline to September 2017, from September 2006 to September 2017, and from September 2016 to September 2017, are calculated and presented in Table 3.7 (SRG), Table 3.8 (BF), and Table 3.9 (Bedrock and Colluvium). The change in TCE concentrations from Baseline in September 2001 to September 2017 are also presented on Figures 3.30, 3.31, and 3.32 for the SRG, BF, and Bedrock, respectively. The change in TCE concentrations from September 2006 to September 2017

are presented on **Figures 3.33, 3.34**, and **3.35** for the SRG, BF, and Bedrock, respectively. The change in TCE concentrations from September 2016 to September 2017 are presented on **Figures 3.36, 3.37**, and **3.38** for the SRG, BF, and Bedrock, respectively. VOC concentration hydrographs for selected monitoring wells are provided in **Appendix C**.

The evaluation of trends consists of a qualitative discussion of the variation in the monitoring and extraction wells for Baseline to September 2017, September 2006 to September 2017, and September 2016 to September 2017. In addition, a quantitative statistical trend analysis of the data is completed from Baseline to September 2017 and September 2010 or September 2013 to September 2017 (last 8 years or minimum eight samples) (Section 3.3.5.1).

3.2.4.1 Baseline to September 2017

The concentration trends vary by location. As expected, a temporary increase in VOC concentrations, attributable to the flux of VOCs moving past a specific well location, is observed in a number of wells upgradient and within the capture zone of the OU2 Area GES. Also, as expected, a reduction in TCE concentrations is observed in monitoring wells in both alluvial subunits downgradient of the OU2 Area GES due to the establishment and maintenance of the hydraulic capture zone by the OU2 Area GES pumping. Finally, a reduction in plume width is observed in the vicinity of the OU2 Area GES. TCE plume width reduction since the startup of the OU2 Area GES is expected because of the localized groundwater flow direction changes due to OU2 Area GES pumping, and the decrease in dissolved-phase concentrations due to extraction and treatment of the groundwater. Locally, there is a slight expansion of the plume width to the north, upgradient of the extraction well locations (at well NW-01).

In 2017, the general trends of the 1,1-DCE, 1,1-DCA, and cis-1,2-DCE graphs are decreasing, similar to the TCE trend. This indicates the absence of significant biodegradation at the site (consistent with the OU2 CSM) and a reduction in VOC concentrations for both parent and daughter compounds in most OU2 Area groundwater monitoring wells, both upgradient and downgradient of the OU2 Area GES. A graphical summary is provided in **Appendix C**.

3.2.4.2 September 2006 to September 2017

For the period from September 2006 to September 2017, the data show reduced TCE concentrations in both alluvial subunits downgradient of the OU2 Area GES due to the maintenance of the hydraulic capture zone by the OU2 Area GES pumping. The plume width is also reduced in the vicinity of the OU2 Area GES, primarily in the SRG with a small reduction observed in the southern portion of the BF.

3.2.4.2.1 Colluvium-Screened Wells – Trends (2007 to 2017)

As described above, the TCE concentrations in the monitoring wells screened within the colluvium (NW15-S, NW17-S, and NW18-M) are posted on **Figure 3.39** for September 2017 data; these results are presented in **Table 3.9**. The trend hydrographs for colluvium wells (NW15-S, NW17-S, and NW18-M) are shown in **Appendix C**. From 2007 (well installation date) to 2017, the TCE, 1,1-DCE, 1,1-DCA, and cis-1,2-DCE graphs show a reduction in these concentrations for well NW17-S. Well NW15-S yields an overall reduced concentration from 2007, but a slight upward

trend between 2013 and 2015, prior to becoming dry in 2016. Well NW-18-M has had an overall decrease in VOC concentration since 2007 (installation), but has fluctuated within a narrow range since 2009.

3.2.4.3 September 2016 to September 2017

Between September 2016 and September 2017, reductions in TCE concentrations were observed in most monitoring wells completed in both alluvial subunits downgradient of the OU2 Area GES due to the maintenance of the hydraulic capture zone by the OU2 Area GES pumping. The year-to-year TCE concentration trends in most of the OU2 GES monitoring wells are consistent with either minor variations typically observed in monitoring wells, or are consistent with anticipated trends based on well locations (refer to **Appendix C** Hydrographs). As discussed in the Statistical Evaluation in Section 3.3.5.1, the overall TCE trend for most downgradient monitoring wells is decreasing; however, there were slight TCE increases from 2016 to 2017 in some well locations, as noted in Table 3.7 (SRG), Table 3.8 (BF), and Table 3.9 (Bedrock). The change in TCE concentrations between 2016 and 2017 are shown on Figures 3.36 (SRG), 3.37 (BF), and 3.38 (Bedrock). As expected, a temporary increase in VOC concentrations, attributable to the flux of VOCs moving past a specific well location, is observed in a number of wells upgradient and within the capture zone of the OU2 Area GES. Well NW03 has a noted increase in TCE concentration (from 15.0 micrograms per liter [µg/L] in September 2016 to 60.6 µg/L in September 2017), but this well is within the OU2 GES capture zone. The extended OU2 GES shutdown (routine annual followed by SRP flood followed by effluent line repair) is a potential contributing factor for this increase.

As discussed further in Section 3.3.5.2, concentration increases in downgradient monitoring wells, particularly in the southern portion of the OU2 Area, may be a result of the hydraulic capture not extending across the full southern plume boundary and suggest hydraulic capture may not be complete in the central portion of the Site. With the exception of NW18-S in the central portion of the site, downgradient TCE concentrations in the southern portion of the plume are well below the MCL in the SRG and low or below detection limits in the BF, thus indicating that there is no or limited downgradient migration of the plume for portions of the Site located outside the southern extent of capture.

3.2.4.4 Extraction Well Data

TCE concentrations have significantly decreased (>85 percent) in groundwater samples collected from each of the three extraction wells since startup in 2001. TCE concentrations for each of the three extraction wells from the September 2001, September 2006, September 2016, and September 2017 sampling events are as follows:

Extraction Well	TCE Concentration (μg/L)			
	2001	2006	2016	2017
EWN	98	14	6.9	7.7
EWM	320	170	39.6	38.7
EWS	320	33	37.2	45.4

Similarly, significant reductions in the other individual COCs have been observed in each of the three extraction wells. Extraction well hydrographs and VOC concentration trend figures are presented in **Appendix E**.

As indicated in the above table, TCE concentrations in each extraction well dropped by an order of magnitude from 2001 to 2017. Although the overall TCE concentration reduced from 2001, TCE concentrations at extraction wells EWM and EWN have remained relatively constant for several years, including the period from 2016 to 2017. This trend is consistent with expected results for long-term operations remediating a regional plume. TCE concentrations observed at well EWS have increased for several years, including the period from 2016 to 2017. Increasing TCE concentrations are also observed in nearby upgradient monitoring wells NW08-S, NW08-M, and NW16-M. The increasing trend in extraction well EWS may be associated with this upgradient mass migrating towards the extraction well, and is possibly more apparent now due to the lower EWS extraction rate and the shifting of the plume centerline, resulting in less influence by clean water being drawn into the well from outside the plume boundary.

Regardless of the VOC variations observed in the extraction wells, all groundwater extracted by the OU2 GES is treated to below drinking water standards prior to discharge for beneficial re-use.

3.3 Capture Zone Evaluation

This section presents the evaluation of the effectiveness of the OU2 Area GES in achieving hydraulic containment of the VOC plume at the Site. The demonstration of hydraulic containment is best evaluated using converging multiple lines of evidence. For this evaluation, a "Systematic Approach for Evaluation of Capture Zones at Pump and Treat Systems" (EPA, 2008) was utilized. This EPA guidance highlights six key steps for systematically performing a capture zone evaluation. The steps identified are listed below:

- Step 1 Review site data, CSM, and remedy objectives.
- Step 2 Define site-specific target capture zone(s) (TCZ[s]).
- Step 3 Interpret water levels:

Potentiometric surface maps (horizontal) and water level difference maps (vertical).

Water level pairs (gradient control points).

Step 4 Perform calculations:

Estimate flow rate calculation.

Capture zone width calculation (can include drawdown calculation).

Modeling (analytical or numerical) to simulate water levels, in conjunction with particle tracking and/or transport modeling.

- Step 5 Evaluate concentration trends.
- Step 6 Interpret actual capture based on Steps 1 through 5, compare to TCZ(s), and assess uncertainties and data gaps.

This evaluation is based on the assessment of the lines of evidence outlined in Steps 1 through 6 above.

A TCZ has been established for this Site. The development of the TCZ was based on the Performance Standards provided in the SOW (see Section 1 and 2C). The Companies have identified the TCZ consistent with EPA's guidance (EPA, 2008) to assist with the containment evaluation (**Figures 3.7** and **3.8** in plan view, and **Figures 3.14**, **3.15**, and **3.16** in cross-section view).

3.3.1 Water Budget/Flow Rate Calculations

EPA guidance recommends simple horizontal analyses be performed to evaluate an estimated flow rate to achieve capture and to estimate capture zone width from pumping. Horizontal groundwater volumetric flow rate (i.e., flux) calculations provide an approach to assess hydraulic containment. The EPA (2008) capture zone guidance suggests using groundwater flux calculations based on Darcy's Law. The groundwater flux approach determines the volumetric flow rate (e.g., cubic ft per day [ft³/day]) of groundwater moving through a selected portion of the alluvial aquifer (i.e., TCZ). These calculations are included and explained in more detail in **Appendix F-3** and briefly summarized below.

The calculated flux is compared to the groundwater extraction rate for that particular area, such as the TCZ (at 20th Street). If the current pumping rate exceeds the calculated flux by a safety factor between 1.5 to 2.0, then this evaluation provides a line of evidence demonstrating hydraulic containment.

The estimated TCZ width, as measured north and south along 20th Street between the plume boundaries for the SRG, is approximately 2,438 ft (**Figure 3.7**). For the BF, the estimated TCZ width is approximately 3,479 ft (**Figure 3.8**). Between March and September 2017 the plume widths in the SRG and BF reduced by approximately 26 percent and 5 percent, respectively. By averaging the combined SRG and BF TCE plume widths, the corresponding TCZ becomes 2,959 ft in September 2017. The averaging approach considers the hydraulic differences between the more permeable SRG and less permeable BF and their hydraulic response to groundwater extraction.

Due to the varied conditions, the saturated alluvial aquifer thickness was based on the average depth from the water level elevation at each extraction well to the Bedrock contact in each of the three extraction wells. In 2017, the alluvial aquifer water levels increased approximately 1.6 ft in the OU2 Area GES. In September 2017, the average saturated alluvial thickness was calculated to be 145.1 ft. In September 2017, the bulk hydraulic conductivity value was calculated to be 111.7 ft/day for the TCZ area, which incorporates the average of the weighted hydraulic conductivities of both the SRG and BF. Non-pumping 2001 hydraulic gradient values were used in the calculations. Therefore, the resulting estimated natural flow rate (Q) would be approximately 548 gallons per minute (gpm) (for September 2017). The average September 2017 OU2 GES extraction rate was 1,370 gpm, which is 2.5 times greater than the calculated flux, and exceeds the EPA's recommended safety factor range of 1.5 to 2.0. Hence, the flux analysis indicates that sufficient groundwater is being extracted to achieve the TCZ at OU2. However, because of declining groundwater levels due to drought conditions and the ongoing operation of the OU2 GES, the plume center has shifted. Hence, this line of evidence alone, while significant, does not support full

containment of the OU2 plume. The inferred extent of capture is depicted on **Figures 3.7, 3.8**, and **3.14**. The capture zone created by OU2 extraction wells is no longer aligned with the plume center because of the reduction of plume width to the north. As such, a portion of the extracted water is coming from an area north of the plume boundary rather than from the observed extent of impacted water.

3.3.2 Capture Width Calculations

Consistent with EPA guidance, the capture zone width calculation uses the same assumptions as the estimated flow rate calculation, but assumes pumping is from one centrally located well. This is an acceptable approach for multiple well systems (Erdmann, 2000) and is included in the EPA Capture Zone guidance (EPA, 2008 on p. 22). However, this calculation assumes that the single theoretical well is centered within the plume; an assumption that is not met when comparing the OU2 TCE plume and the location of the OU2 GES. Furthermore, there are other certain assumptions that are not fully met given the complex hydrogeologic environment and declining groundwater elevations. Using the groundwater extraction rate from the OU2 GES, bulk K values for the OU2 area, saturated thickness (b), and regional hydraulic gradient (i), it is possible to estimate the distance from the well to the downgradient end of the capture zone along the central line of the flow direction (Xo), capture width at the wells (2*Ywell), and the maximum width of capture far upgradient (2*Ymax). A range of values was calculated based on a range of b (due to regional drought/drop in aquifer water levels) and varying bulk K as explained in **Appendix F-3**. The input parameters and estimated capture zone dimensions are summarized below and described in more detail in **Appendix F-3**.

An SRG hydraulic conductivity value of 250 ft/day was used for this analysis, because it represents recent SRG and regional conditions based on the recovery analysis conducted in January 2016 (GHD, 2016). The average hydraulic conductivity value of 28 ft/day was used for the BF.

The calculated capture zone width for each scenario at the wells (2*Ywell) exceeded the identified TCZ (from Table 4.1 above) of 3,410 ft for May 2017 and 2,959 ft for both September 2017 and January 2018. In May and September 2017, with weighted K values of 132.9 and 145.1 ft/day, the capture width at the wells were 4,498 ft and 3,698 ft respectively, which is greater than the average combined plume width listed in **Table 4.1** above. In January 2018, the extraction rate was reduced to approximately 1,270 gpm with a 2*Y_{well} capture width at the wells of 3,500 ft. This value is 541 ft more than the average plume width for the BF and SRG (approximately 2,959 ft, calculated from Figures 3.7 and 3.8 of the 2017 Effectiveness Report), and slightly more than the BF plume width (3,478 ft.). The maximum calculated capture zone width upgradient of the OU2 GES (2*Y_{max}) exceeded the calculated average plume width for the SRG and BF. However, because the observed reduction in plume width is primarily occurring along the northern plume boundary, the capture zone created by OU2 extraction wells is no longer aligned with the center of the plume. Therefore, while these capture width zone calculations indicate that the OU2 GES creates a capture zone that is wider than the measured width of the TCE plume, this line of evidence alone does not support full containment of the OU2 plume because the plume centerline has shifted and OU2 GES is no longer centered within the plume. The results from the calculated capture zone width are consistent with the estimated capture zone widths presented on Figures 3.7 and 3.8.

3.3.3 Potentiometric Surface Maps

Groundwater level measurements were used to create groundwater contour maps for SRG and BF. The manually drawn contour maps are presented on **Figures 3.7** and **3.8** for September 2017. Consistent with EPA guidance, the extraction well water levels were only considered qualitatively and were not used quantitatively in the preparation of the plan view contours. Also, consistent with previous reports, the September 2017 water levels were evaluated because this is the most complete data set for 2017. Groundwater flow lines were manually drawn and overlain on the September 2017 contour maps. Additionally, Surfer™ computer-generated maps were prepared to verify the contouring was not biased (**Appendix F-3**). The Surfer™ computer-generated maps generally support the professional interpretations presented in the manually drawn contour maps. The results of the potentiometric surface map evaluation for the SRG and BF are presented below.

Salt River Gravel

Examination of **Figure 3.7** supports the conclusion that hydraulic containment of the observed plume in the SRG is mostly being maintained. **Figure 3.7** illustrates the OU2 GES capture zone extending from north of the northern plume boundary to south of monitoring well NW11-M. The Airport Ridge plays a prominent role in localized groundwater flow southeast of the OU2 GES. Groundwater impacts in the vicinity of monitoring well NW23-S may flow south of the southern extent of the hydraulic capture zone, although TCE concentrations in downgradient monitoring wells (NW07-M, NW07-S, NW09-M, NW13-M, and NW14-M) remain below MCLs. Downgradient of the OU2 Area GES, hydraulic containment extends a maximum of approximately 1,030 ft west of 20th Street. These results are consistent with the capture zone calculations described in Section 3.3.2 above.

Basin Fill

The groundwater flow lines and estimated capture zone for the BF are shown on **Figure 3.8**. Examination of **Figure 3.8** shows that the estimated OU2 GES capture zone extends from north of monitoring well NW12-D to south of monitoring well NW16-D in the BF deposits. The southern extent of hydraulic capture is not interpreted to extend across southern plume boundary. Downgradient hydraulic containment, as estimated on **Figure 3.8**, extends to a maximum of approximately 740 ft west of 20th Street. These results are consistent with the capture zone calculations described in Section 3.3.2 above.

3.3.4 Cross-Section Contours

Plan view groundwater contours limit hydraulic capture evaluation to two dimensions. Per the CD, however, hydraulic containment of the entire thickness of the affected hydrogeologic units is required, thereby necessitating the evaluation of hydraulic containment in three dimensions. To evaluate vertical containment, groundwater contours were prepared for three existing geologic cross-sections. These cross-sections were previously presented on **Figures 2.3** and **2.4** of this report, although **Figure 3.15** is based on a modified cross-section and is only partially shown on **Figure 2.4**. The cross-section locations are shown on **Figure 2.2**.

Cross-section A-A' is a north-south cross-section through the line of extraction wells. Manual groundwater elevation contours were prepared using the water level measurements for

September 2017. The resulting contours are shown on **Figure 3.14**. Groundwater flow lines were not drawn on the contours because of the vertical exaggeration (in a vertically exaggerated cross-section, the flow lines do not cross the contours at right angles). Instead, the contours were examined to assess flow directions and the variability in flow direction with depth. The conceptualized groundwater contours on **Figure 3.14** appear to show that the direction and magnitude of horizontal gradients along the cross-section are consistent with depth, and therefore, are generally similar to the conclusions with respect to containment as previously discussed using the groundwater potentiometric surface maps. South-southwesterly groundwater flow from monitoring well CRA01 occurs in SRG and BF, and the horizontal hydraulic gradients are very large. To the south of EWS, groundwater flow is northerly from as far south as monitoring well NW16-D. South of this area, the Airport Ridge plays a prominent role in localized groundwater flow. This finding is consistent with the results of the plan view groundwater contours for SRG and BF.

Modified cross-section B"-B" (**Figure 3.15**) is an east-west trending section. East of the OU2 Area GES, the line of section parallels groundwater. However, west of the OU2 Area GES, the line of section does not directly follow the groundwater flow lines as the effect of pumping causes flow lines to bend and even reverse themselves. Examination of **Figure 3.15** shows that groundwater flow is from the east towards the OU2 Area GES. Based on this cross-section, the direction and magnitude of horizontal gradients is consistent with depth to the east and towards the extraction wells, and therefore, support the conclusions with respect to containment as previously discussed using the groundwater potentiometric surface maps. This is consistent with the capture zone defined by the plan view groundwater contours. West of the OU2 Area GES, the groundwater contours indicate that the direction and magnitude of horizontal gradients for both SRG and BF are consistent with depth between EWS and the NW07 monitoring well nest, but show that the direction of flow is largely away from the extraction wells. This result is consistent with the plan view contours for SRG and BF, which show the approximate capture limit is west of the extraction wells.

Of particular interest is the area west of well nest NW07, on the western side of Cross-Section B"-B". The horizontal gradients are no longer consistent in this area between the SRG and BF. As previously discussed in Section 3.2, vertical gradients between deep BF and SRG/shallow BF change dramatically in a westward direction. **Figure 3.13** shows that further west from the OU2 Area GES, vertical gradients increased in magnitude and were upward in direction (up to 3.3 x 10⁻² in well EW13-168/228). While these gradients do not affect the containment analysis of the OU2 Area GES, they do have implications on the groundwater flow west of the OU2 Area GES. West of the OU2 Area GES, the upward vertical gradients indicate groundwater from deep BF flows upward into SRG and shallow BF, and prohibits downward groundwater movement from SRG and shallow BF into deep BF.

Modified Cross-Section C-C' (**Figure 3.16**) is an additional east-west trending section perpendicular to the line of extraction wells between EWN and EWM. East of the OU2 Area GES, the line of section (C-C') parallels groundwater similarly to **Figure 3.15**, and demonstrates that in the vicinity of the extraction wells, the effect of pumping causes flow lines to bend and reverse orientation toward the OU2 GES. Based on this cross-section, the direction and magnitude of horizontal gradients is bifurcated in the vicinity of the extraction wells, causing a localized reversal in flow direction. This is consistent with the cone of depression around the extraction wells depicted on **Figure 3.7**. Further west, positive vertical gradients increase (7.1 x 10⁻³ in cluster EW22S/D).

3.3.5 Groundwater Chemistry Trends

Trends in groundwater chemistry can be used to assess the effectiveness of the OU2 Area GES in achieving hydraulic containment. Monitoring wells located downgradient of the OU2 Area GES that were previously impacted should respond differently over time than monitoring wells located upgradient and within the zone of capture. The timing and occurrence for this response is variable because of a number of contributing factors. These contributing factors include the original contaminant concentration, the aquifer hydraulic parameters at the specific monitoring location, regional water level fluctuations, and variations in mass flux related to the location of the monitoring point along the groundwater flow path. All of these factors can affect water quality over time. Assuming the remediation system is containing groundwater, and absent any new localized sources, then groundwater quality in monitoring wells located downgradient of the GES should decline in response to the discontinuation of contaminant mass flux into the area from upgradient sources. Monitoring wells located upgradient, and within the capture zone, reflect impacts of upgradient concentrations moving towards the extraction wells, the nature and magnitude of the changes being dependent upon the flow path on which they were located. Even if an upgradient well located within the capture zone shows increasing concentrations over time, these increases have no relation to the operation and effectiveness of the downgradient OU2 GES, and the well's flow path endpoint will eventually be an extraction well. The OU2 Area GES has been in operation since 2001, providing sufficient time to clearly show changes in downgradient groundwater quality attributed to the operation of the OU2 Area GES.

Chemistry (contaminant) trends were evaluated based on observed data (as discussed in Section 3.2.3) and statistical analysis; the results from these analyses are briefly summarized in Sections 3.3.5.1 (statistical analysis) and 3.3.5.2 (trends upgradient versus downgradient) below.

3.3.5.1 Statistical Analysis

This section summarizes statistical analyses performed to quantitatively evaluate trends in chemical concentrations over time at monitoring wells within OU2. Trend analyses were conducted for each of the five primary VOCs (PCE, TCE, cis 1,2 DCE, 1,1 DCE, and 1,1 DCA). The trend analysis utilized the Mann Kendall trend test, which is commonly applied to environmental monitoring data (Helsel and Hirsch, 1992; EPA, 2006). The Mann Kendall test identifies whether there is an increasing or decreasing concentration trend, or if a statistically significant trend cannot be determined for each of the tested parameters. Because some of the VOCs evaluated are degradation by products of other constituents, in settings where biodegradation is occurring, it is possible to observe no detectable or declining concentration in the parent compound, but observe an increasing or decreasing concentration in the daughter compound. The full details of the trend analysis are presented in **Appendix F-1**.

In implementing the Mann Kendall trend test, a significance level of 0.05 (95 percent confidence) was used for data sets with more than four samples. A significance level of 0.10 (90 percent confidence) was applied for data sets with four samples, because it is not mathematically possible to achieve 0.05 significance with only four samples. No test was performed with three or fewer data points. For the purposes of performing the Mann Kendall trend test, non-detects were considered to be tied (i.e., equal) values with lower concentrations than the detected observations. For convenience, a value of zero was used for the non-detects, although any value below the lowest

detected result would yield identical ranking in the Mann Kendall trend test (which as a non-parametric method considers only whether a certain observation is above or below another and not the magnitude of the difference). This assumption was made in order to prevent any variation in detection limits influencing the Mann Kendall trend test results.

A total of 95 wells monitored within the OU2 Area and the eastern portion of OU3 (just downgradient of the OU2 GES) were analyzed for data suitability for trend tests. Wells that had four or more samples collected, provided they were last sampled in 2017, with positive detections in 50 percent or more of the results for at least one analyte, were selected for trend analysis. Of the 95 wells monitored, 56 wells were selected for trend analysis based on the criteria described above. The date of commencement of monitoring, as well as sampling frequency, has varied by well, with data collected between 2001 and 2017 (all data collected since startup) and between 2010 or 2013 and 2017 (including the last 5 years of data for wells sampled semi-annually or 8 years of data for wells sampled annually) being considered when carrying out the trend tests. The number of samples available by well varied between 3 and 46 (shown in Table 1 of **Appendix F-1**). A detailed discussion of the results of the statistical trend analysis for wells sampled in the past 8 years (sampled annually) in addition to wells sampled in the last 5 years (sampled semi-annually) is presented in Section 3.3.5.1.

The trend test results are shown in Table 1 in **Appendix F-1**. From a total of 95 wells considered, 12 wells consisted entirely of data not suitable for trend tests due to low percentages of detected results (CRA01, NW04-D, NW10-D, OU312-D, EW22-D, NW08-D, NW12-D, OU312-D, OU313-D, NW01, NW09-M, and NW13-M). In addition, 13 wells were not sampled in 2017 (AS02, EW13-168, EW19-S, OU314-M, PZ01-A, DM515-115, EW13-268, EW21, OU320-M, DM515-265, EW19-D, NW15-S, OU320-S). Thus, the remaining 56 wells were selected for trend analysis as outlined below.

Overall Trends (2001 - 2017)

The results of the trend tests are shown in Table 2 in **Appendix F-1**, and depicted spatially on Figure D.1a for the SRG and Figure D.2a for the BF, respectively (**Appendix F-1**). From the 56 wells selected, 280 data sets were considered for trend analysis (56 wells x 5 analytes). Ninety-two data sets representing 44 wells had more than 50 percent non-detects; and therefore, were not suited for trend tests. Sixty-four data sets representing 29 wells did not have statistically significant trends observed. Statistically significant trends (P<0.05, i.e., greater than 95 percent confidence) were observed for 188 data sets representing 56 wells, including all five chemicals (TCE, 1,1-DCA, 1,1-DCE, cis-1,2-DCE, and PCE). Decreasing trends were identified in 100 of the 188 data sets with significant trends, including data from 37 wells. Most notably, 14 sentinel monitoring wells and wells downgradient of the capture zone in both the SRG and BF (listed in Table 2 of **Appendix F-1**) show decreasing trends or have results below the detection limit. The results over the 15+-year operation of the OU2 GES from these downgradient and sentinel wells support the conclusion that the OU2 GES had been effectively capturing the complete plume width in both the SRG and BF until recently.

As discussed in **Appendix F-1**, increasing trends were observed for 24 data sets, representing 10 wells (ASE76-B, BC11-A, NW19-D, NW23-S, NW23-D, DM509, DM515-210, NW06-D, EW07,

NW25-S). All the wells with increasing trends, except for monitoring well NW19-D, are located upgradient and/or within the capture zone of the OU2 GES.

The current trend results are compared to those found in the last evaluation (GHD, 2016a) in the final column of Table 2 in **Appendix F-1**. In most cases, the trend test conclusions are identical. For 2017, four data sets representing two wells (NW16-M, NW08-S) were newly identified as having significant decreasing trends, where no statistically significant trend was present during the 2016 data evaluation. For 2017, six data sets from six wells, (ASE76-B, BC11-A, DM509, NW19-D, NW23-S, and NW23-D), located upgradient and within the OU2 GES capture zone were identified as having significant increasing trends for 1,1-DCE and six data sets from six wells for TCE (ASE76-B, DM515-210, EW07, NW19-D, NW23-S, and NW25-S), where no statistically significant trend was present during the 2016 data evaluation.

Recent Trends (2010/2013 - 2017)

Results from the recent period (2010/2013-2017) trend tests are shown in Table 3 in **Appendix F-1**. The same 56 wells and resulting 280 data sets used in the overall trends evaluation were considered for the recent trend analysis. For ease of comparison, the final column of Table 3 in **Appendix F-1** repeats the trend conclusions for the overall period (2001-2017 data).

Of the 280 datasets tested, there were 104 data sets not suited for trend testing because these had more than 50 percent non-detects. Of the 176 remaining data sets for which temporal trend tests were carried out, 90 data sets had no statistically significant trends. Thirty-five data sets had statistically significant decreasing trends (Probability <0.05, i.e., greater than 95 percent confidence). The increasing trends (51 data sets in 23 wells) identified included: ASE76-A, ASE76-B, ASE77-A, ASE86-A, EW06, EW07, EWS, NW03, NW06-S, NW07-S, NW08-S, NW08-M, NW09-D, NW11-M, NW11-D, NW14-M, NW14-D, NW18-S, NW19-M, NW19-D, NW23-S, NW23-D, and NW25-S.

Most of the wells listed above are located upgradient or within the OU2 GES capture zone, with the exception of the following SRG wells NW07-S, NW14-M, NW18-S, and NW19-M, and BF wells NW09-D, NW11-D, NW14-D and NW19-D.

Overall decreasing concentration trends from 2001 to 2017 in wells downgradient of the OU2 GES in the SRG and the BF indicate that hydraulic containment has historically been effective at containing mass. The recent transition to increasing concentrations in downgradient wells NW07-S, NW09-D, NW11-D, NW14-D/M, NW18-S, and NW19-M/D indicates that containment of the full width of the plume has not been maintained in recent years, likely a result of the observed decline in regional water levels and associated decrease in extraction rates.

3.3.5.2 Trends Downgradient

In addition to the statistical trend analysis, TCE concentration graphs were prepared to illustrate and compare the TCE contaminant trends for wells downgradient of the OU2 Area GES. The locations of the wells are shown on **Figure 3.7** (SRG) and **Figure 3.8** (BF). Wells were selected to support the hydraulic capture evaluation in each of the subunits of the OU2 Area GES. TCE concentration graphs are presented as Figures F.3 for SRG wells and F.4 for BF wells (**Appendix F-2**).

Five SRG wells depicted in Figure F.3 are located downgradient of the OU2 Area GES capture zone: NW04-S, NW07-S, NW07-M, NW14-M, and NW18-S. Each of these wells has an overall decreasing TCE trend (from installation to 2017) or no trend identified. The statistical trend (see Tables 2 and 3 in **Appendix F-1**) for these five SRG wells for the periods 2001-2017 and 2010/2013-2017 for TCE is decreasing or has no statistical trend. Of the five downgradient wells, however, one (NW19-M) displayed a trend that shows a slight increase since 2012, suggesting that there has been a recent change in the extent of hydraulic containment in the south. Recent TCE concentrations have shown variability in NW07-S and NW07-M; however, there is not a discernable trend as concentrations in downgradient wells NW07-S, NW07-M, and NW14-M remain non-detect or below MCL. TCE concentrations in NW18-S have increased to levels above the MCL; this recent increasing TCE trend suggests that there may be an issue with the continuous extent of hydraulic capture in the central portion of the Site in the vicinity of the Airport Ridge related to the reduction in extraction rates in response to the declining water table.

Three BF wells depicted in Figure F.4 in **Appendix F-2** are located downgradient of the OU2 Area GES capture zone: NW07-D, NW13-D, and NW14-D. These three wells have a decreasing TCE trend or no trend identified. NW14-D, which is located outside the OU2 GES capture zone, has had an overall decreasing TCE trend, but an increasing trend has been observed over the last 5 years. Monitoring well NW19-D, also located outside the OU2 GES capture zone, has had an overall increasing trend, with a TCE concentration increase from 2016 to 2017. TCE has not been detected or detected at very low concentrations below the MCL in downgradient OU3 BF screened monitoring wells OU312-D, OU313-D, OU314-D, EW-228, and EW13-268, which are located downgradient of wells NW14-D and NW19-D.

Historically, the OU2 GES has been successful at containing the TCE plume and reducing concentrations throughout the GES Area, but more recently it appears that low levels of TCE are migrating past the hydraulic capture zone (in the southern portion of the OU2 GES Area and in the area of NW18-S). As discussed in Section 7, potential contingent remedial measures are proposed to be implemented in these areas.

3.3.6 Conclusions

Based upon the evaluation of the multiple converging lines of evidence, the following conclusions are made:

- The volume of water extracted from the OU2 GES exceeds the calculated natural flux of water through the plume area plus the additional safety factor recommended by EPA. However, the OU2 extraction wells are no longer aligned in the center of the plume due to the reduction of plume width to the north. As such, a portion of the extracted water is being produced from an area north of the plume boundary rather than from the observed extent of impacted water.
- The maximum calculated capture zone width upgradient of the OU2 GES exceeds the calculated average plume width for the SRG and BF. However, the observed reduction in plume width is primarily occurring along the northern plume boundary. As such, the plume centerline has shifted and the OU2 extraction wells are no longer aligned in the center of the plume. The calculated width would be similarly off-set to the north and would not extend to the observed southern plume boundary.

- Potentiometric surface maps and groundwater flow lines for September 2017 demonstrate that
 hydraulic containment of most of the plume width (TCZ) is achieved in SRG. The estimated
 capture zone extends from north of monitoring well EW-07 to south of monitoring well NW-11M.
- Potentiometric surface maps and groundwater flow lines for September 2017 demonstrate that
 hydraulic containment of only the northern portion of the observed plume is achieved in BF. The
 estimated capture zone extends from north of monitoring well NW12-D to south of monitoring
 well NW16-D.
- Groundwater contours in cross-sections demonstrate that inside the capture zone, the entire depth of the plume (TCZ) is contained by operation of the OU2 Area GES.
- A comparison of TCE concentrations from Baseline (September 2001) to September 2017 shows an overall decreasing TCE plume width in the vicinity of the OU2 Area GES. The reduction in the width of the TCE plume after continued operation of the OU2 Area GES is expected due to the localized groundwater flow direction changes in response to the OU2 Area GES pumping and the overall decrease in VOC concentrations.
- Overall decreasing trends in downgradient monitoring wells indicate that the OU2 GES has historically been successful at containing the TCE plume; however, based on increasing trends recently observed in certain downgradient monitoring wells, it appears that low levels of TCE are migrating past the target hydraulic capture zone in the southern portion of the OU2 GES area (south of monitoring well NW11-M in the SRG and south of NW16-M in the BF). Additionally, increasing TCE concentrations in NW18-S suggests that there may be an issue with the continuous extent of hydraulic capture in the central portion of the Site in the vicinity of the Airport Ridge related to the reduction in extraction rates in response to the declining water table. As discussed in Section 7, potential contingent remedial measures are proposed to be implemented in these two areas.

OU2 Area GES Operations and Operational Assessment

4.1 OU2 GES Operations

GHD continued O&M of the groundwater extraction, treatment, and discharge system on behalf of the Companies.

4.1.1 Operational Uptime and Shutdowns

Groundwater extraction, treatment volumes and run times for the reporting period are summarized in **Tables 4.1** and **4.2**, respectively. Daily groundwater extraction, treatment volumes and run times by month are provided in **Appendix G**. A summary of the monthly uptime percentages is provided in **Table 4.3**. The operational uptime is recorded from the GES's SCADA system.

A summary of the extraction well/treatment system shutdowns greater than 30 minutes in duration is provided in **Appendix H**. Additional detail on longer term system shutdowns is presented below.

The GES was shut down from January 6, 2017 to February 6, 2017, for the scheduled SRP Grand Canal dry up and annual maintenance shutdown, and from February 10, 2017 to March 18, 2017, as requested by SRP, due to excessive stormwater inflows into the Grand Canal and/or releases into the Salt River channel. These two shutdowns resulted in a total of 65 days with no active groundwater extraction/treatment. Preventative maintenance activities were performed during the shutdown periods.

The GES was shut down on April 13, 2017, to isolate and repair a leak from the effluent (treated water) line after it was struck near the intersection of 24th Street and Roosevelt Road by a horizontal directional drilling contractor. The GHD construction group began repair work to the damaged OU2 effluent line on April 18, 2017, after coordinating with various vendors and governmental agencies for an expedited repair. The repair work consisted of asphalt removal and excavating down to the damaged effluent line (approximately 8 to 9 ft bgs). When the asphalt was removed, a large void caused by the rapid release of water from the pipeline was observed above the effluent line. The effluent line was fully excavated and exposed on April 20, 2017, and an approximately 3 to 3.5-inch diameter hole was observed in the pipe.

On April 21, 2017, the hole in the pipe was cleaned and filled with an epoxy putty to repair the damage to the concrete lining of the effluent line. A stainless steel repair clamp was installed over the hole once the epoxy putty had dried. The effluent line was then pressure/leak tested at normal operating pressure for 2 hours with no leakage observed. The excavation was then backfilled with a half sack of ABC slurry, in accordance with City of Phoenix (COP) requirements, and the OU2 Treatment Facility was restarted on April 21, 2017. The asphalt over the area of the effluent line strike was repaired on April 26, 2017. This shutdown resulted in 7 days with no active groundwater extraction/treatment.

In total, extraction/treatment did not occur on 72 days during 2017 (approximately 20% of 2017) due to the planned and unplanned shutdowns detailed above.

4.1.2 Set Point Changes

Extraction well flow rate set points changed for wells EWN, EWM, and EWS during the reporting period. The flow rate set points for all three extraction wells were reduced to 0 gpm from January 5, 2017 to February 6, 2017, during the annual maintenance shutdown. At system restart (February 6, 2017), the set points for EWN, EWM, and EWS were increased to 425 gpm, 800 gpm, and 275 gpm, respectively. During this shutdown period, preventative maintenance of the OU2 Area GES was performed to maximize runtime during the remainder of the year.

The flow rate set points for all three extraction wells were reduced to 0 gpm from February 10, 2017 to March 18, 2017, due to the SRP-mandated shutdown described in Section 4.1.1. At system restart (March 18, 2017), the set points for EWN, EWM, and EWS were increased to 430 gpm, 760 gpm, and 285 gpm, respectively.

The flow rate set points for all three extraction wells were reduced to 0 gpm from April 13, 2017 to April 21, 2017, due to the effluent line utility strike described in Section 4.1.1. At system restart (April 21, 2017), the set points for EWN, EWM, and EWS were increased to 440 gpm, 680 gpm, and 285 gpm, respectively.

Several flow reductions occurred from wells EWN, EWM, and EWS from the last system restart to December 31, 2017, due to the drop in regional aquifer water levels (available for extraction). Groundwater extraction well flow rate set point changes are summarized in **Table 4.4**.

4.1.3 Groundwater Treatment

Approximately 568 million gallons of groundwater were extracted and treated at the 20th Street Groundwater Treatment Facility during 2017. All flow volumes are recorded from the groundwater extraction, treatment, and discharge system's SCADA system. The monthly combined influent flow is computed by adding the monthly influent flow from each extraction well as recorded on the SCADA system. The manufacturer's stated accuracy for the flow meters is plus or minus 2 percent; therefore, there could be up to a 4 percent difference in the total influent and effluent flow volumes and still be within the manufacturer's accuracy for flow measurement. The total volumes for the month are calculated by adding the daily volumes recorded by the SCADA system.

4.1.4 Process Sampling and Data Validation

GHD coordinated the monthly performance sampling of the treatment system combined influent and submitted samples to the project laboratory for analyses. Analytical results of the treatment system combined influent performance samples for the reporting period are summarized in **Table 4.5** and **Table 4.6**. Analytical results of the facility discharge performance samples for the reporting period are summarized in **Table 4.7**. Process sampling laboratory analytical reports and field sample keys are located in **Appendix A**, and data validation reports are located in **Appendix B**.

4.1.5 Other Sampling - Grand Canal

GHD coordinated the annual performance sampling of the treated water discharge location at the Grand Canal as part of the agreement with SRP, and submitted the samples to the project laboratory for analyses. Analytical results of the treated water discharge location for the reporting period are summarized in **Table 4.8**, **Table 4.9**, and **Table 4.10**.

GHD conducted the semi-annual sampling events for boron of the treated water discharge to the SRP Grand Canal and the water in the SRP Grand Canal for additional boron concentration data on March 20, 2017 and September 5, 2017. The analytical results are included as **Table 4.11**. Sampling locations are depicted on **Figure 4.1** and **Figure 4.2**.

4.1.6 GAC Operations and Change-outs

The GAC treatment system was operational during 2017. Because of the gradual reduction in extraction well pumping rates (due to regional aquifer water level declines), the number of on-line GAC pairs was maintained at three pairs with a fourth pair as a "spare". GHD coordinated the monthly performance sampling of the primary GAC vessels effluent and submitted the samples to the project laboratory for analyses. GAC Units 1, 3, and 9 were not in use during 2017 and were not sampled. The sample is collected after the primary (lead) GAC vessel, and prior to the secondary (lag) GAC vessel, in accordance with Section 7.2.8.1 and Section 7.2.8.2 of the revised O&M Manual (CRA, 2011). The analytical results are included as **Table 4.12**. Carbon change-outs and removal of spent carbon from GAC vessels occurred in May, August, and November/December 2017, and are summarized in **Table 4.13**.

4.1.7 UV Oxidation Treatment

The UV oxidation system was not required to operate during the reporting period, as vinyl chloride was not detected in the influent groundwater and/or in upgradient groundwater monitoring wells. Vinyl chloride has never been detected in the influent groundwater. Additionally, it was not necessary to adjust VOC concentrations to control carbon utilization rates. The Start-up Report (CRA, 2002a) provided an assessment of the UV oxidation system for treatment of VOCs.

The UV oxidation system operated temporarily November 13 through 15, 2017, as a routine preventative maintenance measure to test the operability of the system. No hydrogen peroxide (used as part of the UV oxidation system) was stored on Site during 2017. Typically, hydrogen peroxide can be delivered within a week of placing the order, if it is needed.

4.2 Operational Assessment

During 2017, the sampling and analytical schedule detailed in the revised O&M Manual (CRA, 2011a) was implemented. **Appendices H** through **L** provide supporting information associated with the Operational Assessment presented in this section. Approximately 568 million gallons (1,743 acre-ft) of water was treated in 2017 by the OU2 Area GES. From startup in 2001 through 2017, over 16.0 billion gallons (49,164 acre-ft) of water has been treated by the OU2 Area GES and discharged to an SRP-operated canal for irrigation purposes and beneficial re-use. All of the treated water met the discharge water quality standards for VOCs during 2017, consistent with every year of GES operation. The concentration for boron at the downstream monitoring point met the discharge criteria.

The OU2 Area GES removed approximately 197 pounds of VOCs in 2017 (0.35 pounds per million gallons), and has removed a calculated total of 15,124 pounds from start-up (approximately 0.94 pounds per million gallons). Included in **Appendix K** (pages K-1 and K-2), are charts showing the cumulative and monthly VOC mass removed from the extracted groundwater, as well as the cumulative and monthly volume of groundwater treated. In addition, included in **Appendix K** are tables summarizing the total cumulative volume of groundwater treated and total cumulative VOC mass removed from the extracted groundwater annually (Table K.1, page K-3), as well as the monthly volume treated and monthly mass removal for the reporting period (Table K.2, page K-4).

Total VOC concentrations in the OU2 GES influent water have decreased from time of start-up to December 2017. In December 2001, the baseline combined influent VOC concentration was 295.9 μ g/L. In December 2017, the combined influent VOC concentration was 37.9 μ g/L (**Appendix K**, page K-4).

From time of start up until the end of 2004, the annual amount of water treated by the OU2 GES decreased due to a reduction in extraction well flow rates as a result of declining water levels in the alluvial aquifer (**Appendix K**, Table K-1). In 2004, there was a temporary flow change (operating only wells EWM and EWS). From 2005 until the end of 2013, however, the annual amount of water treated by the GES remained relatively constant (approximately 1.0 billion gallons per year). In 2016 and 2017, approximately 600 and 570 million gallons, respectively, were pumped. As discussed in Section 3.0, sufficient groundwater was pumped in 2017 to maintain VOC plume containment based on the presented flux analysis.

The annual amount of VOCs removed from the influent water has decreased from 3,674 pounds at the end of 2002 to 197 pounds in December 2017 in concert with the decreasing trend in influent VOC concentrations (**Appendix K**, page K-3) and the overall decrease in VOC concentrations in each of the alluvial subunits within the OU2 regional plume. **Appendix K**, page K-6 shows the decreasing trend of total influent monthly VOC and TCE concentrations from start up in 2001 until December 2017.

The sections below summarize the performance parameters and trends for the period of January 1 to December 31, 2017.

4.3 Groundwater Extraction

Included in **Appendix E**, are charts of the daily average system flow rates superimposed on the extraction well hydrographs and concentration trends of select VOCs for each extraction well plotted against time. Analytical data for the extraction wells and the combined influent for 2017 were provided in the monthly progress reports submitted to the Agencies.

4.4 Granular Activated Carbon Treatment

Three pairs of GAC adsorbers (primary and secondary) were in operation during the majority of 2017, to maintain an optimum flow rate (5 to 7 gpm/ft²) through each GAC pair, with a fourth pair available as a spare. The fourth pair of GAC vessels was on standby and rotated in and out of operation to maximize the life/use of carbon in all of the operating vessels. Included in **Appendix J**, are charts showing the trends of VOC concentrations after treatment by the primary GAC adsorber and prior to final treatment by the secondary GAC adsorber. Analytical results are also summarized in **Table 4.12**. The VOC results after the secondary GAC treatment are discussed in Section 4.5. Carbon change-outs of GAC units in 2017 are summarized in **Table 4.13**. Carbon change-outs are scheduled when the concentration of a VOC in the groundwater exceeds the allowable discharge concentration after treatment by the primary carbon adsorber, and prior to final treatment by the secondary carbon adsorber.

Based on evaluation of the influent and effluent data, a "roll-over" effect is, and has been occurring for the compound 1,1-DCE. This phenomenon is caused by the TCE preferentially adsorbing to the carbon and pushing any adsorbed 1,1-DCE off the carbon and through the carbon bed. The 1,1-DCE accumulates in the carbon and eventually exits the carbon at a concentration higher than the influent concentration. This requires more frequent carbon change-outs to treat the 1,1-DCE buildup in the carbon beds. The Companies use a mixture of coconut-based carbon from Evoqua Water Technologies LLC (Evoqua), and re-agglomerated carbon from Calgon Carbon Corporation (Calgon). These carbons function more efficiently with the compounds that roll over, when compared to coal-based carbon.

Evoqua regenerated the GAC at their Red Bluff, California regeneration facility following carbon change-outs during 2017. Copies of the manifests and certificates of destruction are included in **Appendix L**. After a carbon change-out, the secondary GAC units are switched to primary units, and the GAC units with the regenerated carbon become the secondary GAC units. The status of the GAC units at the end of 2017 is provided in **Table 4.12**. Based on the treatment facility allowable

discharge concentrations presented in Section 4.5, the GAC continues to provide effective treatment of the extracted groundwater.

Entrained air collecting in the carbon of the primary GAC adsorbers, causing the GAC to become "blinded" by the air as discussed in previous annual reports, was not a significant problem in 2017. Backwashing of the primary GAC units was similar (in frequency and amount of water) in 2017 when compared to 2016, and there was no evidence of an increase in entrained air in the groundwater from the extraction wells or in the combined influent samples.

The backwashed water was discharged to the backwash wastewater (BWWW) tank and subsequently to the COP sanitary sewer. In addition, after each carbon change-out, the new carbon was backwashed to remove the carbon fines prior to placing it into service. The backwash water generated during the fines removal process was also discharged to the BWWW tank and subsequently to the COP sanitary sewer. Backwash water volumes discharged to the COP sanitary sewer for the reporting period are summarized in **Table 4.1**. Quarterly analytical results of the backwash water discharged to the COP sanitary sewer during the reporting period are summarized in **Table 4.14**. The discharges to the COP sanitary sewer met all of the COP sanitary sewer discharge requirements during the 2017 reporting period.

4.5 Facility Discharge

As required by Section B.1.4.1 of the OU2 Remedial Design CD SOW, Section 2.B. of the OU2 Interim Remedial Action CD SOW, and confirmed in the Final (100%) Design Report (CRA, 1999) approved by the Agencies, the CD SOW requires the extracted water to be treated so that the effluent water meets the applicable standards at the point of compliance. The applicable standards at the point of compliance and a summary of the analytical results for the treatment facility discharge are provided in **Table 4.7**. The results of discharge monitoring indicate that the OU2 treatment facility treated all of the extracted groundwater to below the treated groundwater discharge standards for VOCs prior to discharging into the Grand Canal.

4.6 Grand Canal

In accordance with the agreement between the Companies and the Salt River Valley Water Users Association relating to the discharge of treated groundwater from the OU2 treatment facility into the SRP Grand Canal, the treated groundwater discharged to the Grand Canal was sampled monthly in 2017. A summary of the monthly VOC analytical results for the treated groundwater discharged to the SRP Grand Canal is provided in **Table 4.7** and **Table 4.8**, and indicates treatment of the extracted groundwater to below the treated groundwater discharge standards for VOCs (see Section 4.4). Also, in accordance with the agreement, the treated groundwater discharged to the Grand Canal is required to be analyzed once a year for select metals and general chemistry parameters. The annual sampling of the groundwater discharge to the Grand Canal for these parameters was performed on September 5, 2017, and analytical results are provided in **Tables 4.9** and **4.10**, respectively.

As mentioned in previous Effectiveness Reports (beginning in 2010), the groundwater pump and treatment operation is being conducted as a response action at a federal Superfund site and no Arizona Pollution Discharge Elimination System (AZPDES) permit is required; however, the

substantive provisions of the AZPDES program must be met. The OU2 interim groundwater remedy extraction wells have naturally occurring levels of boron in excess of ADEQ's surface water quality standard for agricultural irrigation.

In a letter dated July 2, 2009, the Companies indicated that they would implement a monitoring program to demonstrate that the discharge of the treated OU2 water does not cause the water quality within the SRP Grand Canal to exceed the applicable irrigation standard for boron, in light of the public concerns that were raised. Included with the letter was an AZPDES Mixing Zone Application and a mixing zone calculation technical memorandum which presented data used to calculate the minimum mixing zone length at which the boron concentration will be below the regulatory standard of 1 milligram per liter (mg/L) (CRA, 2009b). The mixing zone calculations and analytical results indicate that there is adequate mixing in the Grand Canal within 500 meters of the OU2 treatment system discharge point for the concentration of boron to be in compliance with the applicable regulatory standards.

Surface water samples for boron analysis are collected at the OU2 Discharge Point to the Grand Canal, upstream (470 ft upgradient) of the OU2 Discharge Point, and downstream (approximately 800 ft downgradient) of the OU2 Discharge Point (compliance points). Sampling has been conducted quarterly in 2010 and 2011 and semiannually since 2012, because the boron results have been below the action limit (1 mg/L) in the downstream sampling point and have continued to meet the mixing zone requirements (ranging from 0.22 mg/L to 0.38 mg/L for 2017). Analytical results for the semi-annual boron samples conducted in 2017 are provided in **Table 4.11**.

ADEQ conditionally approved the Companies' Mixing Zone Application in a letter dated September 2, 2009, and requested a contingency plan. In a letter dated October 2, 2009, the Companies submitted a proposed contingency plan addendum (added in Section 8.0 of the revised O&M Manual [CRA, 2011a]) to the mixing zone calculations and monitoring plan in the event that the treated groundwater discharging to the Grand Canal exceeds the discharge criteria beyond the mixing zone (CRA, 2009c).

4.7 Evaluation of Scaling Tendency of Extracted Groundwater

During the OU2 design phase, evaluation of the groundwater chemistry indicated that the groundwater is over-saturated with respect to calcium carbonate (CaCO₃), and that formation of calcium scaling may occur in the pipelines and treatment system. To mitigate the potential for scaling, the Final (100%) Design Report included an acid injection system at the treatment facility to adjust the pH of the extracted groundwater prior to treatment. During construction of the treatment facility in 2000, a Technical Memorandum (CRA, 2000) recommending delaying the installation of a pH control system, was submitted to, and approved by the EPA. The acid storage tank and all below-grade piping were installed during the construction phase to facilitate future use, if required.

The requirement to install the acid feed system was based on an evaluation of the influent groundwater chemistry for scaling tendency, and on the need for frequent GAC backwashing, as determined during the operation of the treatment system.

The general chemistry and inorganic constituents in the influent groundwater for 2017, as presented in **Table 4.6**, are similar to that reported in the Final (100%) Design Report (CRA, 1999). The

significant calcium concentrations and total alkalinity values, together with slightly higher than neutral pH, indicate that scale forming in the treatment system may occur. Potential scaling was evaluated from the following 2017 groundwater analytical data (**Table 4.6**):

Analytical Parameters	September 2016
Total Alkalinity (as CaCO ₃)	248 mg/L
Calcium (as CaCO ₃) (Hardness)	375 mg/L
Temperature	26°C
Total Dissolved Solids	1,270 mg/L
рН	7.16
Calculated LI	0.140
Note: °C - degrees Celsius LI - Langelier Index	

The calculated LI indicates that the influent groundwater may be scale-producing (Rafferty, 1999). If the calculated LI is less than zero, the water is under-saturated with respect to CaCO₃, and may have a tendency to remove existing CaCO₃ protective coatings in pipelines and equipment. If the LI is equal to zero, the water is considered to be neutral, and will be neither scale-producing nor scale-removing. If the LI is greater than zero, the water is super-saturated with respect to CaCO₃ and scale forming may occur. The LI provides no indication of how much scale would be produced.

During the 2017 annual shutdown of the groundwater extraction and treatment system, GHD inspected some of the treatment system piping for scale formation. GHD did not detect extensive scale precipitation/build-up on the treatment system facility piping. Therefore, GHD concludes that treatment of the extracted groundwater to minimize scale formation is not required at this time, and recommends that the influent groundwater chemistry continue to be evaluated annually along with annual visual observation of the treatment facility piping to confirm that additional treatment to mitigate scale precipitation is not required.

5. Maintenance Work and Repair Summary

A summary of the inspections, minor maintenance work, and repairs completed during the reporting period is provided in **Appendix M**. Major maintenance activities completed in 2017 are discussed below.

5.1 Treatment Facility Maintenance

During the first quarter (January through March 2017) of the reporting period, an influent air relief vault was removed and reset after being damaged by a COP water main break on 20th Street just south of Van Buren. A new pump, motor, and four new sections of discharge pipe were installed at EWS after the well was rehabilitated. In addition, the Companies replaced leaking nipples at the EWN pressure gauge and the EWS air release valve and sample port, and replaced a 1-inch x 8-inch section of pipe on the wastewater feed tank going to the influent main.

During the second quarter (April through June 2017) of the reporting period, the ruptured force main at 24th Street and Roosevelt was repaired. The Washington Street swing gate was repaired after being damaged by wind. A new backflow preventer was installed on the irrigation line, a new impeller was installed on the irrigation booster pump, and a cracked irrigation line along the building in the alley behind the facility was repaired. A leaking copper tube on the EWM flow control valve (FCV) was repaired. The EWM level transducer was removed and a replacement was ordered.

During the third quarter (July through September 2017) of the reporting period, the fan run capacitor on the office heating/ventilation/air conditioning (HVAC) unit was replaced. A new level transducer was installed in EWM. A leaking air eliminate valve was repaired on GAC Vessel #6A. New insulation was installed in the office and maintenance shop HVAC units' Freon lines. The HVAC compressor at the EWN electrical building was replaced. A broken section of the 20th Street slide gate was replaced, as well as the circuit board for the facility slide gates. A broken irrigation line on the back side of the facility was also repaired, and the Companies coordinated lining repairs of GAC Vessels #1A, 1B, 3A, 3B, 4A and 4B with epoxy coating with subcontractor.

During the fourth quarter (October through December 2017) of the reporting period, a new impeller, seal plate and diaphragm was installed in the irrigation booster pump. A leaking air eliminate valve was repaired on GAC Vessel #5B. An 8-inch bottom flange was replaced on GAC Vessel 1A. A 4-inch x 6-foot section of leaking fill line on GAC Vessels #8A and #8B was replaced, and a 2-inch nipple and flange on the GAC Vessel #8A bottom vent port was replaced. A leaking pressure equalizing port nipple on the EWM FCV was repaired, and a leaking 2-inch drain valve on GAC Vessel #5A was replaced.

5.2 Extraction Well Maintenance

No major maintenance was conducted at EWN in 2017. No major maintenance was conducted at EWM in 2017.

Well rehabilitation was conducted at EWS in 2017 that consisted of rehabilitation, redevelopment (swabbing, surging, and bailing), and acid treatment. The old submersible pump and motor was replaced with a new pump and motor. During the pump replacement, four corroded sections of the existing column pipe in EWS were replaced with new sections in order to increase the performance of the extraction well.

5.3 Monitoring Well Maintenance

Monitoring wells NW04-S, NW04-D, NW05-S, NW06-D, NW07-D, NW07-M, NW08-S, NW08-D, NW08-M, NW09-D2, and NW12-D were rehabilitated in either March or September 2017, as needed, due to scale build-up on the well screens. The rehabilitation was accomplished by adding Aqua Clear® MGA sulfamic acid solution with acid enhancer in each monitoring well, swabbing to distribute the acid in the water column, allowing the acid to sit in the wells for 24 hours, and then brushing, swabbing, and bailing each monitoring well. All of the acid solution from the wells was pumped out by using a 3-inch Grundfos® groundwater sampling pump. Prior to treatment of the removed acid solution by the treatment system, pH of the removed acid solution was increased to an acceptable pH by adding groundwater generated from the well purging activities. Lid gaskets

were replaced and maintenance was performed on various monitoring well vaults throughout the monitoring well network.

6. Summary and Conclusions

Evaluation of potentiometric surface maps for September 2017 water elevation data indicate that the current projected extent of capture extends from north of the plume boundary in both the SRG and BF south to approximately well NW11-M (in SRG) and south of well NW16-D (in BF). Overall decreasing concentration trends in downgradient monitoring wells and decreasing plume widths observed since start-up indicate that the OU2 GES has historically been successful at containing the TCE plume. However, based on increasing TCE concentration trends recently observed in certain downgradient monitoring wells, it appears that a relatively small mass of TCE appears to be migrating past the target hydraulic capture zone in the southern portion of the OU2 GES area, as well as a small localized area around well NW18-S (in SRG) in the vicinity of the Airport Ridge. As discussed below, contingent remedial measures are being implemented to address these areas.

The 2017 O&M of the 20th Street Groundwater Treatment Facility continued with no significant issues. The discharged water met all discharge standards for VOCs and the system is operating as intended, and is expected to continue to perform as required by the CD.

7. Recommendations

Recommendations for the next year of O&M in 2018 are as follows:

- Maintain the semi-annual groundwater sampling frequency (in March and September to coincide with the ADEQ regional sampling) for VOCs in the OU2 Area GES monitoring wells, as outlined in Table 7.1.
- Continue hydraulic monitoring semi-annually for the OU2 Area GES monitoring wells.
- Continue to have operational flexibility of the system and allow adjustments as needed. Such
 adjustments have been shown to optimize the system performance.
- Implement the pilot study in-situ chemical oxidation (ISCO) work plan (GHD, 2017c) in two areas (in the SRG in areas of wells NW03 and NW18-S, and in the BF in areas of wells NW11-D and NW19-D) as potential contingent remedial measures (as outlined in Section 8.0 of the O&M Manual [CRA, 2011]), that may be appropriate prior to the submittal of the Remedial Investigation/Feasibility Study. Low levels of TCE are migrating past the hydraulic capture zone in the southern portion of the OU2 GES Area and in the area of NW18-S where the extent of capture is incomplete. The work plan focused on the selection of an in-situ treatment remedy enhancement that would reduce the concentrations of Site COCs in groundwater within the pilot test area of the central and southern portions of the OU2 area.

The objectives of the Pilot Study included: i) Confirm the effectiveness of the ISCO treatment under field conditions, ii) Determine to what extent the ISCO treatment can reduce VOC concentrations in the two localized pilot test areas of the SRG and BF, iii) Determine specifications for injections at the Site, including volume, flow rate and pressure, and time and

area of influence, iv) Determine whether the sodium persulfate dose and activator should be adjusted, and v) Evaluate treatment times and determine whether any rebound is observed within the evaluation period.

Periodic monitoring of groundwater within the source areas will be performed to monitor and assess the progress of the ISCO treatment. The work plan was revised and submitted the Agencies on January 10, 2018, and was approved by the Agencies on April 3, 2018.

The 2018 Effectiveness Report will provide additional details regarding the ISCO pilot study work plan implementation and pre- and post-ISCO injection results and analysis.

 The Companies are preparing a proposed plan to provide a long-term response for the central portion of the Site that will also help mitigate any potential future impact to OU3.

8. References

- Anderson, T.W., Freethey, G.W., and Tucci, P, 1990. Geohydrology and Water Resources of Alluvial Basins in South-central Arizona and Parts of Adjacent States: U. S. Geological Survey Open-File Report 89-378: 1990.
- Bales, J.T., Welendorf, C.S., and. Pewe, T. L, 1986. Environmental Geology of the Tempe Quadrangle, Maricopa County, Arizona. Folio of the Tempe Quadrangle, Arizona, Map GI2-f. Bureau of Geology and Mineral Technology Geologic Investigation Series: 1986.
- Brown and Poole, 1989. Hydrogeology of the Western Part of the Salt River Valley Area, Maricopa and Pinal Counties, Arizona. U.S. Geological Survey Water Resources Investigation Report 88-4202: 1989.
- CCA, 2017. Effectiveness Report 2016, 52nd Street Superfund Site, Operable Unit 1 Area, Phoenix, Arizona. March 2017.
- CRA, 1999. Final (100%) Design Report, 52nd Street Superfund Site, Operable Unit 2 Area, Phoenix, Arizona. Four volumes: July 1, 1999.
- CRA, 2000. Technical Memorandum Number 3, Operable Unit 2 Area, 52nd Street Superfund Site, Operable Unit 2 Area, Phoenix, Arizona. September 7, 2000.
- CRA, 2002a. Startup Report, 20th Street Groundwater Treatment Facility, 52nd Street Superfund Site, Operable Unit 2 Area, Phoenix, Arizona. January 11, 2002.
- CRA, 2002b. Final Operation and Maintenance Manual, 20th Street Groundwater Treatment Facility, 52nd Street Superfund Site, Operable Unit 2 Area, Phoenix, Arizona. Thirteen volumes: January 25, 2002.
- CRA, 2002c. Baseline Groundwater Monitoring Report, July through November 2001, 52nd Street Superfund Site, Operable Unit 2 Area, Phoenix, Arizona. April 12, 2002.
- CRA, 2003. Effectiveness Report 2002, 52nd Street Superfund Site, Operable Unit 2 Area, Phoenix, Arizona. April 15, 2003.

- CRA, 2004a. Effectiveness Report 2003, 52nd Street Superfund Site, Operable Unit 2 Area, Phoenix, Arizona. April 15, 2004.
- CRA, 2004b. Revised Final Operation and Maintenance Manual, 20th Street Groundwater Treatment Facility, 52nd Street Superfund Site, Operable Unit 2 Area, Phoenix, Arizona. July 14, 2004.
- CRA, 2005. Effectiveness Report 2004, 52nd Street Superfund Site, Operable Unit 2 Area, Phoenix, Arizona. April 14, 2005.
- CRA, 2006. Effectiveness Report 2005, 52nd Street Superfund Site, Operable Unit 2 Area, Phoenix, Arizona. April 14, 2006.
- CRA, 2007. Effectiveness Report 2006, 52nd Street Superfund Site, Operable Unit 2 Area, Phoenix, Arizona. April 13, 2007.
- CRA, 2008. Effectiveness Report 2007, 52nd Street Superfund Site, Operable Unit 2 Area, Phoenix, Arizona. April 15, 2008.
- CRA, 2009a. Effectiveness Report 2008, 52nd Street Superfund Site, Operable Unit 2 Area, Phoenix, Arizona. April 15, 2009.
- CRA, 2009b. Mixing Zone Calculations and Proposed Monitoring Plan, 20th Street Groundwater Treatment Facility, Operable Unit 2 Area 52nd Street Superfund Site, Phoenix, Arizona. July 2, 2009.
- CRA, 2009c. Mixing Zone Calculations and Proposed Monitoring Plan Addendum, 20th Street Groundwater Treatment Facility, Operable Unit 2 Area 52nd Street Superfund Site, Phoenix, Arizona. October 2, 2009.
- CRA, 2010a. Effectiveness Report 2009, 52nd Street Superfund Site, Operable Unit 2 Area, Phoenix, Arizona. April 15, 2010.
- CRA, 2010b. March to May 2010 Groundwater Monitoring Report, 52nd Street Superfund Site, Operable Unit 2, Phoenix, Arizona. July 15, 2010
- CRA, 2011a. Revised Final Operation and Maintenance Manual, 20th Street Groundwater Treatment Facility, 52nd Street Superfund Site, Operable Unit 2 Area, Phoenix, Arizona. February 2011.
- CRA, 2011b. Effectiveness Report 2010, 52nd Street Superfund Site, Operable Unit 2 Area, Phoenix, Arizona. April 15, 2011.
- CRA, 2012. Effectiveness Report 2011, 52nd Street Superfund Site, Operable Unit 2 Area, Phoenix, Arizona. March 30, 2012.
- CRA, 2013. Effectiveness Report 2012, 52nd Street Superfund Site, Operable Unit 2 Area, Phoenix, Arizona. March 30, 2013.
- CRA, 2014a. Effectiveness Report 2013, 52nd Street Superfund Site, Operable Unit 2 Area, Phoenix, Arizona. March 31, 2014.

- CRA, 2014b. Addendum to Construction Completion Report, Results of Additional Groundwater Monitoring Wells (NW21-S, NW22-S/D, NW23-S/D, NW24-S/D, NW25-S and NW26) 52nd Street Superfund Site, Operable Unit 2 Area, Phoenix, Arizona. September 24, 2014.
- CRA, 2015. Effectiveness Report 2014, 52nd Street Superfund Site, Operable Unit 2 Area, Phoenix, Arizona. March 31, 2015.
- D&M, 1993. Draft Aquifer Test Report, Well DM 518, Motorola 52nd Street. October 20, 1993.
- EMA, 2002. Results of Hydrogeologic and Construction Services for Installation of Extraction and Monitor Wells, 52nd Street Superfund Site, Operable Unit 2, Phoenix, Arizona. Two Volumes: August 29, 2002.
- EPA, 2003. Second Amended Unilateral Administrative Order. December 11, 2003.
- EPA, 2004. Motorola 52nd Street Superfund Site, Phoenix, Arizona, Operable Unit 2 (OU2) Approval Letter. August 31, 2004.
 - (1) Capture Zone Calculations (May 28, 2004)
 - (2) March through May 2004 Groundwater Monitoring Report (July 14, 2004)
 - (3) Revised Operation and Maintenance Manual (July 13, 2004)
- EPA, 2006. Data Quality Assessment: Statistical Methods for Practitioners (EPA QA/G 9S). Office of Environmental Information, United States Environmental Protection Agency, Washington D.C. EPA/240/B 06/003.
- EPA, 2008. A Systematic Approach for Evaluation of Capture Zones at Pump and Treat Systems. EPA Office of Research and Development. EPA 600/R-08/003.
- EPA, 2011. Termination of EPA Unilateral Administrative Order Docket Number 98-15, Motorola 52nd Street Superfund Site, Phoenix, Arizona. January 14, 2011.
- GHD, 2016. Effectiveness Report 2015, 52nd Street Superfund Site, Operable Unit 2 Area, Phoenix, Arizona. March 31, 2016.
- GHD, 2017a. Effectiveness Report 2016, 52nd Street Superfund Site, Operable Unit 2 Area, Phoenix, Arizona. May 12, 2017.
- GHD, 2017b. December 2016 through May 2017 Semi-Annual Groundwater Monitoring Report, 52nd Street Superfund Site, Operable Unit 2 Area, Phoenix, Arizona. July 14, 2017.
- GHD, 2017c. Pilot Study Work Plan for In-Situ Chemical Oxidation. Motorola 52nd Street Superfund Site, Operable Unit 2 Area, Phoenix, Arizona. October 26, 2017 (revised January 10, 2018).
- Hammett, B.A. and R.L. Herther, 1995. Maps Showing Groundwater Conditions in the Phoenix Active Management Area, Maricopa, Pinal and Yavapai Counties, Arizona-1992. Arizona Department of Water Resources Hydrologic Map Series Report Number 27: July 1995.
- Helsel, D.R. & R.M. Hirsch. 1992, Statistical Methods in Water Resources. Amsterdam: Elsevier (USGS publication also available at http://pubs.usgs/gov/twri/twri4a3).

- Rafferty, Kevin. 1999. Scaling in geothermal heat pump systems, U.S. Department of Energy. (July 1999) (Also available at http://www.lenntech.com/calculators/langelier/index/langelier.htm)
- Reeter, R.W. and W.H. Remick, 1986. Maps Showing Groundwater Conditions in the West Salt River, East Salt River, Lake Pleasant, Carefree and Fountain Hills Sub-Basins of the Phoenix Active Management Area, Maricopa, Pinal and Yavapai Counties, Arizona-1983. Arizona Department of Water Resources Hydrologic Map Series Report Number 12. July 1986.
- Reynolds, S.J. and R.D. Bartlett, 2002. Subsurface Geology of the Easternmost Phoenix Basin, Arizona: Implications for Groundwater Flow. Arizona Geological Survey Contributed Report CR-02A: August 2002.
- US District Court, District of Arizona, 2010. Consent Decree Between The State of Arizona and Defendants Honeywell International Inc.; Freescale Semiconductor, Inc.; Aviall, Inc.; Kachina Technical Services and Processes; and Joray Corporation. July 13, 2010.

Figures

Jan 3, 2018

SITE LOCATION

FIGURE 1.1

Aug 14, 2018

GES MONITORING WELL NETWORK

FIGURE 1.2

Jan 3, 2018

SCHEMATIC CONCEPTUAL SITE MODEL

Jan 3, 2018

LOCATIONS OF GEOLOGICAL CROSS-SECTIONS

013932-151 Feb 1, 2018

GEOLOGIC CROSS-SECTION A-A'

013932-151 Aug 3, 2018

GEOLOGIC CROSS-SECTION B-B'

Feb 1, 2018

GEOLOGIC CROSS-SECTION C-C'

013932-151 Feb 1, 2018

GEOLOGIC CROSS-SECTION D-D'

FIGURE 2.6

BASELINE GROUNDWATER ELEVATIONS SEPTEMBER 2001 - SRG

Sep 19, 2018

FIGURE 3.1

BASELINE GROUNDWATER ELEVATIONS SEPTEMBER 2001 - BF

Sep 19, 2018

FIGURE 3.2

BASELINE GROUNDWATER ELEVATIONS SEPTEMBER 2001 - BR Jan 3, 2018

FIGURE 3.3

Sep 19, 2018

GROUNDWATER ELEVATIONS - SEPTEMBER 2006 - SRG

Sep 19, 2018

GROUNDWATER ELEVATIONS - SEPTEMBER 2006 - BF

Jan 3, 2018

GROUNDWATER ELEVATIONS - SEPTEMBER 2006 - BR

Aug 7, 2018

GROUNDWATER ELEVATIONS - SEPTEMBER 2017 - SRG

Oct 15, 2018

GROUNDWATER ELEVATIONS - SEPTEMBER 2017 - BF

Feb 1, 2018

GROUNDWATER ELEVATIONS - SEPTEMBER 2017 - BR

CHANGE IN GROUNDWATER ELEVATIONS SEPT. 2001 TO SEPT. 2017 - SRG

Sep 19, 2018

CHANGE IN GROUNDWATER ELEVATIONS SEPT. 2006 TO SEPT. 2017 - SRG Sep 19, 2018

CHANGE IN GROUNDWATER ELEVATIONS SEPT. 2016 TO SEPT. 2017 - SRG

Sep 19, 2018

VERTICAL GRADIENTS FOR VARIOUS WELL PAIRS SEPTEMBER 2017

Aug 2, 2018

CONCEPTUALIZED GROUNDWATER CONTOURS A-A' SEPTEMBER 2017

013932-151 Oct 25, 2018

CONCEPTUALIZED GROUNDWATER CONTOURS B"-B" SEPTEMBER 2017

013932-151 Oct 15, 2018

52ND STREET SUPERFUND SITE, PHOENIX, ARIZONA **EFFECTIVENESS REPORT - 2017**

CONCEPTUALIZED GROUNDWATER CONTOURS CROSS-SECTION C-C' - SEPTEMBER 2017

Feb 13, 2018

52ND STREET SUPERFUND SITE, PHOENIX, ARIZONA EFFECTIVENESS REPORT - 2017

BASELINE TCE CONCENTRATIONS SEPTEMBER 2001 - SRG

Sep 19, 2018

BASELINE TCE CONCENTRATIONS SEPTEMBER 2001 - BF Sep 19, 2018

BASELINE TCE CONCENTRATIONS SEPTEMBER 2001 - BR Jan 3, 2018

Sep 19, 2018

TCE CONCENTRATIONS - SEPTEMBER 2006 - SRG

013932-151 Sep 19, 2018

TCE CONCENTRATIONS - SEPTEMBER 2006 - BF

Jan 9, 2018

TCE CONCENTRATIONS - SEPTEMBER 2006 - BR

Sep 19, 2018

TCE CONCENTRATIONS - SEPTEMBER 2017 - SRG

Sep 19, 2018

TCE CONCENTRATIONS - SEPTEMBER 2017 - BF

Feb 8, 2018

TCE CONCENTRATIONS - SEPTEMBER 2017 - BR

Feb 12, 2018

TCE DISTRIBUTION GEOLOGIC CROSS-SECTION A-A'

013932-151 Aug 14, 2018

Feb 12, 2018

013932-151 Feb 8, 2018

TCE DISTRIBUTION GEOLOGIC CROSS-SECTION D-D'

CHANGE IN TCE CONCENTRATIONS SEPT. 2001 TO SEPT. 2017 - SRG Sep 19, 2018

CHANGE IN TCE CONCENTRATIONS SEPT. 2001 TO SEPT. 2017 - BF 013932-151 Sep 19, 2018

CHANGE IN TCE CONCENTRATIONS SEPT. 2001 TO SEPT. 2017 - BR

Feb 8, 2018

CHANGE IN TCE CONCENTRATIONS SEPT. 2006 TO SEPT. 2017 - SRG

Sep 19, 2018

CHANGE IN TCE CONCENTRATIONS SEPT. 2006 TO SEPT. 2017 - BF

Sep 20, 2018

CHANGE IN TCE CONCENTRATIONS SEPT. 2006 TO SEPT. 2017 - BR

013932-151 Sep 20, 2018

CHANGE IN TCE CONCENTRATIONS SEPT. 2016 TO SEPT. 2017 - SRG 013932-151 Sep 19, 2018

CHANGE IN TCE CONCENTRATIONS SEPT. 2016 TO SEPT. 2017 - BF

013932-151 Sep 19, 2018

CHANGE IN TCE CONCENTRATIONS SEPT. 2016 TO SEPT. 2017 - BR

013932-151 Sep 20, 2018

Mar 23, 2018

EXTENT OF TCE IN AND DOWNGRADIENT OF COLLUVIUM - OU2 GES (SEPT. 2017)

GHD

OPERABLE UNIT 2 AREA 52ND STREET SUPERFUND SITE, PHOENIX, ARIZONA EFFECTIVENESS REPORT - 2017

SRP GRAND CANAL SAMPLING LOCATIONS

Feb 22, 2018

FIGURE 4.1

013932-151 Feb 22, 2018

PROCESS SAMPLING LOCATIONS

Tables

Groundwater Monitoring Well Network 52nd Street Superfund Site, OU2 Area

Table 3.1

Phoenix, Arizona

Well ID			Monitoring	
Monitoring	Construction	Landin	Hardwardta	Water
Wells/	Туре	Location	Hydraulic	Quality
BC-16	С	32nd Street, between E Van Buren and Washington Streets	Χ	X
CRA01	С	I-10 and Roosevelt Street	X	X
DM509	С	N 30th Place and E Van Buren	X	X
DM515-210	С	N 24th Place and Monroe Street	X	
EW03	С	N 30th Place and E Van Buren	X	X
EW06	С	20th Street and Madison Street	X	X
EW07	С	20th Street and Fillmore Street	X	X
EW19-S	С	12th Street and Monroe Street	X	
EW21	С	12th Street and Fillmore Street	X	
EW22-D	С	15th Street and Polk Street	X	X
EW22-S	С	15th Street and Polk Street	X	X
EWSPZ1	С	20th Street north of Washington Street	X	
NW01	С	24th Street and Roosevelt Street	X	X
NW02	С	Between 19th and 20th Streets on Polk Street	X	X
NW03	С	Between 19th and 20th Streets on Monroe Street	X	X
NW04-S & D	С	Patricio, between Polk and Van Buren	X	X
NW05-S	С	19th Street, between Van Buren and Polk	X	X
NW06-S & D	С	19th Street, between Adams and Washington Streets	X	Χ
NW07-S, M, & D	С	18th Street, between Madison and Jefferson Streets	X	X
NW08-S, M, & D	С	20th Street and Adams Street	X	Χ
NW09-D, D2, & M	С	20th Street, south of UPRR track	X	X
NW10-D	С	Sky Harbor Circle and 20th Street	X	Χ
NW11-M & D	С	20th Street and Madison Street	X	X
NW12-D	С	Villa Street and 20th Street	X	X
NW13-M & D	N	South of UPRR track and west of 19th Street	X	X
NW14-M & D	N	19th Street and Jackson Street	X	X
NW15-S	С	Jackson Street east of 22nd Street	X	X
NW16-M & D	N	20th Street south of Washington Street	Χ	X
NW17-S	С	Monroe Street west of 19th Street	Χ	X
NW18-S & M	С	Adams Street east of 18th Street	Χ	Χ
NW19-M & D	C	Harrison Street and 24th Street	Χ	Χ
NW21-S	C	24th Street and Fillmore Street	Χ	Χ
NW22-S & D	C	21st Place and Van Buren Street	X	X
NW23-S & D	C	23rd Street & Madison Street	X	X
NW24-S & D	C	28th Street south of Fillmore Street	X	X
NW25-S	C	33rd Street and Garfield Street	X	X
OU312-M & D	C	15th Street and Adams Street	X	X
OU313-M & D	C	15th Street and Polk Street	X	^
OU314-M & D	C	McKinley Street and 16th Street	X	
GHD 013932 (41)	J	morally chock and roll chock	Λ.	

Table 3.1

Groundwater Monitoring Well Network 52nd Street Superfund Site, OU2 Area Phoenix, Arizona

Well ID	Construction Type		Monitoring	
Monitoring Wells/		Location	Hydraulic	Water Quality
PZ01-S & D	N	I-10 and Polk Street	Χ	
PZ02-S & D	N	I-10 and Polk Street	X	
TEW01	С	I-10 and Polk Street	X	
PZ01-A & B	С	32nd Street, between E Van Buren and Washington Streets	X	X

Notes:

- S Shallow
- D Deep
- M Middle
- C Conventional Well
- N Nested Well

Table 3.2

Summary of Monitoring Well Construction Details
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

Well ID		Easting NAD27	Northing NAD27	Hydro- stratigraphic Unit of Well Screen	Reference Elevation (ft AMSL)	Ground Elevation (ft AMSL)	Screen Top Depth (ft bgs)	Screen Bottom Depth (ft bgs)	Screen Top Elevation (ft AMSL) NGVD29
OU2 GES Netv	work '	Wells							
BC16		470,549.00	891,043.00	SRG	1,116.02	NI	70.0	85.0	1,046.02
CRA01		463,136.23	894,253.99	SRG	1,106.43	1,107.29	105.5	125.5	1,000.93
DM509		469,954.81	891,992.81	BF	1,114.06	1,114.58	124.0	175.0	990.06
EW03		469,954.19	892,003.38	SRG/BF	1,114.75	1,114.60	57.0	107.0	1,057.75
EW06		463,030.97	889,882.84	SRG	1,097.75	1,097.75	61.0	111.0	1,036.75
EW07		463,123.11	893,133.29	SRG	1,104.96	1,105.20	78.0	128.0	1,026.96
EW19-D	(3)	457,697.83	891,405.06	BF	1,087.48	1,087.85	247.0	267.0	840.48
EW19-S	(3)	457,678.87	891,405.37	SRG	1,087.42	1,087.74	57.0	107.0	1,030.42
EW21	(3)	457,761.90	893,019.02	SRG	1,094.11	1,094.80	58.0	108.0	1,036.11
EW22-D		459,655.30	892,217.60	BF	1,095.75	1,096.33	407.0	427.0	688.75
EW22-S		459,644.28	892,218.24	SRG	1,095.72	1,096.39	58.0	108.0	1,037.72
EWM		463,149.81	891,836.24	SRG/BF	1,103.61	NI	86.0	206.0	1,017.61
EWN		463,150.06	892,478.65	SRG/BF	1,110.78	NI	100.0	220.0	1,010.78
EWS		462,804.97	890,786.77	SRG/BF/BR	1,100.37	NI	94.0	194.0	1,006.37
EWSPZ1		462,940.00	890,712.00	SRG/BF	1,098.26	NI	118.0	208.0	980.26
NW01		465,406.43	894,322.64	SRG	1,112.22	1,112.22	90.0	110.0	1,022.22
NW02		462,610.64	892,289.91	SRG	1,101.83	1,101.83	173.0	193.0	928.83
NW03		462,590.35	891,405.62	SRG	1,096.92	1,097.16	120.0	140.0	976.92
NW04-D		461,225.33	892,235.10	BF	1,098.93	1,100.39	183.0	203.0	915.93
NW04-S		461,225.30	892,231.81	SRG	1,098.86	1,100.37	90.0	130.0	1,008.86
NW05-S		462,214.74	891,833.81	SRG	1,098.84	1,100.37	88.0	128.0	1,010.84
NW06-D		462,238.65	890,968.88	BF	1,095.53	1,097.30	181.5	201.5	914.03
NW06-S		462,239.01	890,971.81	SRG	1,095.49	1,097.29	89.5	129.5	1,005.99
NW07-D		461,546.77	889,962.89	BF	1,094.03	1,094.45	215.0	235.0	879.03
NW07-M		461,546.79	889,956.83	SRG	1,093.89	1,094.40	180.0	200.0	913.89
NW07-S		461,546.74	889,966.35	SRG	1,094.12	1,094.44	90.0	130.0	1,004.12
NW08-D		463,071.52	891,034.69	BF	1,098.68	1,099.02	224.0	244.0	874.68
NW08-M		463,075.33	891,037.96	BF	1,097.55	1,098.94	175.0	195.0	922.55
NW08-S		463,071.95	891,042.29	SRG	1,097.39	1,098.80	100.0	150.0	997.39
NW09-D		463,002.21	889,027.40	BF	1,099.58	1,099.84	210.0	230.0	889.58
NW09-D2		462,997.99		BF	1,099.30	1,099.87	240.0	260.0	859.30
NW09-M		462,996.54		SRG	1,099.42	1,099.92	170.0	190.0	929.42
NW10-D		463,012.51	888,143.23	BF	1,098.91	1,099.47	210.0	230.0	888.91
NW11-D		463,035.91	889,880.93	BF	1,097.69	1,098.07	210.0	230.0	887.69
NW11-M		463,028.37	889,884.51	SRG	1,097.59	1,098.14	173.0	193.0	924.59
NW12-D		462,818.29	893,558.17	BF	1,104.23	1,104.55	225.0	245.0	879.23
NW13-D		461,903.18	889,018.75	BF	1,096.61	1,096.93	215.0	235.0	881.61
NW13-M		461,903.43	889,018.53	SRG	1,096.67	1,096.93	175.0	195.0	921.67
NW14-D		462,203.48	889,564.00	BF	1,096.12	1,096.35	215.0	235.0	881.12

Table 3.2

Summary of Monitoring Well Construction Details
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

Well ID		Easting NAD27	Northing NAD27	Hydro- stratigraphic Unit of Well Screen	Reference Elevation (ft AMSL)	Ground Elevation (ft AMSL)	Screen Top Depth (ft bgs)	Screen Bottom Depth (ft bgs)	Screen Top Elevation (ft AMSL) NGVD29
OU2 GES Netw	vork '	Wells (cont	d)						
NW14-M		462,203.25	889,563.85	SRG	1,096.11	1,096.35	175.0	195.0	921.11
NW15-S		463,755.88	889,597.93	Colluvium	1,098.96	1,099.31	84.0	104.0	1,014.96
NW16-D		462,882.12	890,437.08	BF	1,097.96	1,098.30	220.0	230.0	877.96
NW16-M		462,882.12	890,437.08	SRG	1,097.92	1,098.30	155.0	175.0	942.92
NW17-S		461,993.75	891,409.94	Colluvium	1,096.75	1,097.00	130.0	145.0	966.75
NW18-M		461,857.01	891,048.77	Colluvium	1,094.92	1,095.27	170.0	190.0	924.92
NW18-S		461,850.21	891,048.98	SRG	1,094.78	1,095.26	90.0	130.0	1,004.78
NW19-D		463,938.05	889,006.25	BF	1,100.50	1,101.06	205.0	220.0	895.50
NW19-M		463,943.91	889,005.87	SRG	1,100.69	1,101.28	165.0	185.0	935.69
NW21-S		465,460.68	893,086.29	SRG	1,106.65	1,107.24	91.0	106.0	1,015.65
NW22-S		463,843.81	891,848.19	SRG	1,099.36	1,100.09	95.0	130.0	1,004.36
NW22-D		463,843.61	891,843.41	BF	1,099.67	1,100.13	160.0	170.0	939.67
INVVZZ-D		403,043.01	091,043.41	ы	1,099.07	1,100.13	190.0	195.0	909.67
NW23-S		464,887.16	889,752.00	SRG	1,101.26	1,101.52	95.0	130.0	1,006.26
NW23-D		464,887.25	889,747.07	BF	1,101.13	1,101.49	178.0	218.0	923.13
NW24-S		469,941.18	892,811.22	SRG	1,116.54	1,116.94	77.0	97.0	1,039.54
NW24-D		469,941.04	892,816.84	BF	1,116.59	1,117.07	135.0	155.0	981.59
NW25-S		471,383.40	894,018.24	SRG	1,128.40	1,128.74	95.0	115.0	1,033.40
NW27-D	(1)	467,472.92	888,977.29	BF	1,111.36	1,111.86	175.0	215.0	936.36
OU312-D	(3)	459,599.15	890,776.43	BF	1,090.77	NI	245.6	265.6	845.17
OU312-M	(3)	459,599.97	890,700.12	SRG	1,090.79	NI	146.7	166.7	944.09
OU313-D	(3)	459,546.09	892,217.30	BF	1,095.71	NI	224.7	244.7	871.01
OU313-M	(3)	459,536.02	892,217.15	SRG	1,095.75	NI	154.7	174.7	941.05
OU314-D	(3)	460,195.17	893,851.88	BF	1,099.14	NI	231.2	251.2	867.94
OU314-M	(3)	460,183.85	893,673.11	SRG	1,099.05	NI	145.7	165.7	953.35
PZ01A		470,929.00	891,345.00	SRG	1,117.04	NI	70.0	75.0	1,047.04
PZ01B		470,930.00	891,353.00	BF	1,117.05	NI	120.0	125.0	997.05
PZ01-D		463,124.48	892,169.75	BR	1,102.69	1,102.46	217.0	237.0	885.69
PZ01-S			892,169.75	SRG	1,102.69	1,102.46	99.0	119.0	1,003.69
PZ02-D		•	892,306.08	BR	1,107.95	1,108.25	245.0	265.0	862.95
PZ02-S		•	892,306.08	SRG	1,107.95	1,108.25	120.0	140.0	987.95
TEW01		463,111.30	892,203.14	SRG	1,103.56	1,103.85	100.0	145.0	1,003.56
OU2 GES Supp	plem	ental Wells							
AS02	(1)	463,059.52	888,148.52	SRG	1,099.75	1,098.90	50.0	90.0	1,049.75
ASE28-A	(1)	467,463.76	888,923.82	SRG	1,108.20	NI	68.0	88.0	1,040.20
ASE76-A	(1)	466,354.46	889,252.70	SRG	1,105.42	NI	80.0	130.0	1,025.42
ASE76-B	(1)	466,346.35	889,253.15	BF	1,105.34	NI	180.0	230.0	925.34
ASE77-A	(1)	464,925.48	890,548.28	SRG	1,101.86	NI	85.0	115.0	1,016.86
ASE77-B GHD 013932 (41)	(1)	464,927.37	890,548.37	BF	1,101.76	NI	180.0	230.0	921.76
(/									

Table 3.2

Summary of Monitoring Well Construction Details
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

Well ID		Easting NAD27	Northing NAD27	Hydro- stratigraphic Unit of Well Screen	Reference Elevation (ft AMSL)	Ground Elevation (ft AMSL)	Screen Top Depth (ft bgs)	Screen Bottom Depth (ft bgs)	Screen Top Elevation (ft AMSL) NGVD29
OU2 GES Sup	plem	nental Wells	(cont'd)						
ASE78-B	(1)	464,216.08	889,597.38	BF	1,099.97	NI	156.0	186.0	943.97
ASE86-A	(1)	466,982.30	890,992.82	SRG	1,106.07	NI	86.0	126.0	1,020.07
ASE88-B	(1)	464,805.79	888,313.43	BF	1,103.08	NI	175.0	215.0	928.08
ASE131-A	(1)	470,513.35	888,125.48	SRG	1,115.83	1,116.33	85.0	115.0	1,030.83
BC11-A	(1)	467,741.10	889,919.54	Colluvium	1,111.21	NI	225.0	240.0	886.21
BC11-B	(1)	467,756.54	889,918.78	BF	1,111.25	NI	135.0	160.0	976.25
DM510-110	(2)	466,993.20	891,769.10	SRG	1,107.40	NI	110.00	NI	997.40
DM515-115	(2)	465,925.20	891,282.80	SRG	1,103.61	NI	115.0	NI	988.61
DM515-210	(2)	465,925.20	891,282.80	BF	1,103.61	NI	210.0	NI	893.61
DM515-265	(2)	465,925.20	891,282.80	BR	1,103.61	NI	265.0	NI	838.61
EW13-118	(3)	460,187.58	889,593.26	SRG	1,092.71	NI	114.5	119.5	980.11
EW13-168	(3)	460,187.58	889,593.26	SRG	1,092.71	NI	164.5	169.5	930.11
EW13-228	(3)	460,187.58	889,593.26	BF	1,092.71	NI	224.5	229.5	870.11
EW13-268	(3)	460,187.58	889,593.26	BF	1,092.71	NI	264.5	269.5	830.11
PHXA01		456,741.46	886,453.17	SRG	1,102.77	NI	50.0	140.0	1,052.77
PHXA02		466,697.76	886,711.33	SRG	1,105.51	NI	50.0	140.0	1,055.51
PHXA03		466,920.55	888,579.21	SRG/BR	1,106.17	NI	53.0	106.5	1,053.17
PHXA04		465,703.16	889,055.62	SRG	1,104.58	NI	50.0	140.0	1,054.58
PHXA05		465,676.63	888,665.07	SRG	1,104.53	NI	50.0	140.0	1,054.53
PHXA06		464,128.81	889,796.69	SRG	1,100.41	NI	50.0	140.0	1,050.41
OU3 Suppleme	enta	l Wells							
OU319-M		459,603.65	891,503.11	SRG	1,091.21	NI	150.0	170.0	941.21
OU320-M	(3)	463,037.94	888,765.34	SRG	1,100.12	NI	160.0	180.0	940.12
OU320-S	(3)	463,039.57	888,757.42	SRG	1,100.20	NI	65.0	115.0	1,035.20
Well Damaged	l/Aba	andoned - R	emoved from	n Network in 20	003				
EW12-093		463114.54	891064.43	SRG	1,098.84	1,098.84	91.0	96.0	1,007.84
EW12-128		463114.54	891064.43	SRG	1,098.84	1,098.84	126.0	131.0	972.84
EW12-180		463114.54	891064.43	BF	1,098.84	1,098.84	179	184	919.84
EW12-227		463114.54	891064.43	BF	1,098.84	1,098.84	224	229	874.84
EW12-239		463114.54	891064.43	BF	1,098.84	1,098.84	239	244	859.84
Wells Dry - Re	emov	ved from Net	work in 2003	3					
FDMW07		466,298.03	891,504.25	SRG	1,104.57	1,104.57	55.0	85.0	1,049.57
MW01 (Hertz)		464,611.89	888,658.59	SRG	1,101.33	1,101.33	64.0	89.0	1,037.33
MW05 (Shurgin	1)	460,018.76	890,674.99	SRG	1,091.80	1,091.80	52.0	92.0	1,039.80
Well no longer	r acc	essible, rem	oved from N	etwork in 2007					
EW23		460,419.10	895,405.49	SRG	1,101.51	1,101.84	57.0	107.0	1,044.51

Table 3.2

Summary of Monitoring Well Construction Details 52nd Street Superfund Site, OU2 Area Phoenix, Arizona

Well ID	Easting NAD27	Northing NAD27	Hydro- stratigraphic Unit of Well Screen	Reference Elevation (ft AMSL)	Ground Elevation (ft AMSL)	Screen Top Depth (ft bgs)	Screen Bottom Depth (ft bgs)	Screen Top Elevation (ft AMSL) NGVD29
Wells Dry - Remo	ved from Net	work in 2010) - Honeywell d	iscontinued	monitoring	with ADEQ ap	proval	
ASE36-A	465,671.30	887,215.73	SRG	1,102.58	NI	69.0	99.0	1,033.58
ASE77-B	464,927.37	890,548.37	BF	1,101.76	NI	180.0	230.0	921.76
Well Destroyed/Al	bandoned - R	emoved fron	n Network Aug	ust 2012				
DM518-OB1	467,562.31	890,987.13	SRG/BF/BR	1,106.75	1,107.29	58.0	150.0	1,048.75

Notes:

NAD - North American Datum

ft AMSL - feet Above Mean Sea Level

ft bgs - feet below ground surface

SRG - Salt River Gravels

BF - Basin Fill

BR - Bedrock

NI - No Information

- (1) Quality data collected by CH2MHILL on behalf of Honeywell
- (2) Quality data collected by Clear Creek Associates on behalf of Freescale
- (3) Sampled by ERM on behalf of OU3 Working Parties

NGVD - National Geodetic Vertical Datum

Table 3.3

Groundwater Elevations - September 2001, 2006, 2016 and 2017
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

Well			Gro	oundwater El	evation (ft AN	(ISL)	Change in Groundwater Elevation (ft)			
ASCI SRG 1,019.08 Dry Dry Dry — — — — — — — — — — — — — — — — — — —	Well ID	•	•	•	•	•	•	•	•	
ASE19A \ SRG	SRG Wells									
ASE19A \ SRG		SRG	1,019.08	Dry	Dry	Dry				
ASE20A	ASE19-A 1			•	-	•				
ASE22-A			•	· ·						
ASE22AA	ASE22-A 1		1,034.64	1,027.07						
ASE27-A	ASE22-AR 1				1,010.15	1,013.39			3.2	
ASE28-A SRG 1,028-36 Dry Dry Dry	ASE26-A 1	SRG	1,032.07	1,023.60	Dry	Dry				
ASE30A	ASE27-A 1	SRG	1,033.33		Dry	Dry				
ASE31-A SRG 1,032-24 Dry Dry Dry Dry	ASE28-A 1	SRG	1,028.36	Dry	Dry	Dry				
ASE32A	ASE30-A 1	SRG	1,031.05	Dry	Dry	Dry				
ASE33-A	ASE31-A 1	SRG	1,030.47	Dry	Dry	Dry				
ASE34-A SRG - 1,025.49 Dry Dry	ASE32-A 1	SRG	1,032.24	Dry	Dry	Dry				
ASE34-8	ASE33-A ¹	SRG	1,032.83	1,023.70	Dry	Dry				
ASE35-A SRG 1,021-48 1,013-74 1,013-68 -17.6 -8.8 -0.1 ASE36-A SRG 1,024-61 1,014-22 Dry Dry	ASE34-A 1	SRG		1,025.49	Dry	Dry				
ASE36-A SRG	ASE34-B 1	SRG		1,025.30	1,008.10	1,011.18		-14.1	3.1	
ASE37-A SRG/BF	ASE35-A 1	SRG	1,031.26	1,022.48	1,013.74	1,013.68	-17.6	-8.8	-0.1	
ASE38-A SRG/BF - 1,056.65 1,043.28 1,045.12	ASE36-A 1	SRG	1,024.61	1,014.22	Dry	Dry				
ASE39-A	ASE37-A 1	SRG/BF	1,056.12	1,056.27	1,042.75	1,044.70	-11.4	-11.6	2.0	
ASE41-A	ASE38-A 1	SRG/BF		1,056.65	1,043.28	1,045.12		-11.5	1.8	
ASE46-A	ASE39-A 1	SRG/BF	1,056.14	1,055.90						
ASE51-A	ASE41-A 1	SRG		1,050.59						
ASE52-A	ASE46-A 1	SRG		1,049.45						
ASE53-A	ASE51-A 1	SRG		1,054.05						
ASE54-A	ASE52-A 1	SRG		1,056.07	1,043.48	1,045.18		-10.9	1.7	
ASE55-A	ASE53-A 1	SRG		1,056.59						
ASE56-A SRG - 1,050.64	ASE54-A 1	SRG		1,051.35	1,040.68	1,042.27		-9.1	1.6	
ASE57-A	ASE55-A 1	SRG		1,046.73	Dry	Dry				
ASE58-A	ASE56-A 1	SRG		1,050.64						
ASE59-A	ASE57-A 1	SRG		1,051.79						
ASE60-A 1 SRG 1,057.49 1,044.61 1,046.1011.4 1.5 ASE61-A 1 SRG 1,057.95 1,045.11 1,046.6911.3 1.6 ASE62-A 1 SRG 1,047.39 1,037.10 1,038.90 8.5 1.8 ASE63-A 1 SRG/BF 1,054.62 1,041.19 1,043.3711.3 2.2 ASE64-A 1 SRG 1,049.41 1,032.97 1,036.64 12.8 3.7 ASE65-A 1 SRG 1,049.41 1,032.97 1,036.6412.8 3.7 ASE65-A 1 SRG 1,055.66 1,020.75 1,023.29111.9 2.5 ASE66-A 1 SRG 1,055.91 1,043.49 1,045.25 ASE67-A 1 SRG/BF 1,055.91 1,043.49 1,045.25 10.7 1.8 ASE68-A 1 SRG/BF 1,055.91 1,043.49 1,045.25 10.7 1.8 ASE69-A 1 SRG 1,054.16 1,043.45 1,044.72 9.9 28.2 ASE69-A 1 SRG 1,054.16 1,043.45 1,044.72 9.9 28.2 ASE69-A 1 SRG 1,054.16 1,043.45 1,044.72 9.4 1.3 ASE71-A 1 SRG 1,050.72 1,040.67 1,042.05 8.7 1.4 ASE71-A 1 SRG 1,052.86 Dry ASE72-A 1 SRG 1,023.95 1,016.97 1,016.81 ASE73-A 1 SRG 1,023.95 1,016.97 1,016.81 ASE73-A 1 SRG 1,023.14 1,007.45 1,010.13 13.0 2.7 ASE75-A 1 SRG 1,023.14 1,007.45 1,010.13 13.4 2.6 ASE76-A 1 SRG 1,015.48 1,001.11 1,002.88 Dry 13.4 2.6 ASE76-A 1 SRG 1,015.48 1,001.11 1,002.88 11.4 1.1 ASE81-A 1 SRG 1,015.43 1,041.07 1,042.58	ASE58-A 1	SRG		1,049.58	1,038.81	1,040.47		-9.1	1.7	
ASE61-A SRG 1,057.95 1,045.11 1,046.6911.3 1.6 ASE62-A SRG 1,047.39 1,037.10 1,038.908.5 1.8 ASE63-A SRG/BF 1,054.62 1,041.19 1,043.3711.3 2.2 ASE64-A SRG 1,049.41 1,032.97 1,036.6412.8 3.7 ASE65-A SRG 1,049.41 1,032.97 1,036.6411.9 2.5 ASE66-A SRG 1,055.46	ASE59-A 1	SRG		1,056.50						
ASE62-A SRG 1,047.39 1,037.10 1,038.90	ASE60-A 1	SRG		1,057.49	1,044.61	1,046.10		-11.4	1.5	
ASE63-A 1 SRG/BF 1,054.62 1,041.19 1,043.37111.3 2.2 ASE64-A 1 SRG 1,049.41 1,032.97 1,036.6412.8 3.7 ASE65-A 1 SRG 1,035.16 1,020.75 1,023.29111.9 2.5 ASE66-A 1 SRG 1,052.46	ASE61-A 1	SRG		1,057.95	1,045.11	1,046.69		-11.3	1.6	
ASE64-A 1 SRG 1,049.41 1,032.97 1,036.6412.8 3.7 ASE65-A 1 SRG 1,035.16 1,020.75 1,023.2911.9 2.5 ASE66-A 1 SRG 1,052.46	ASE62-A 1	SRG		1,047.39	1,037.10	1,038.90		-8.5	1.8	
ASE65-A 1 SRG 1,035.16 1,020.75 1,023.2911.9 2.5 ASE66-A 1 SRG 1,052.46	ASE63-A 1	SRG/BF		1,054.62	1,041.19	1,043.37		-11.3	2.2	
ASE66-A SRG 1,052.46	ASE64-A 1	SRG		1,049.41	1,032.97	1,036.64		-12.8	3.7	
ASE67-A		SRG		1,035.16	1,020.75	1,023.29		-11.9	2.5	
ASE68-A SRG/BF 1,051.93 1,013.77 1,042.009.9 28.2 ASE69-A SRG 1,054.16 1,043.45 1,044.729.4 1.3 ASE70-A SRG 1,050.72 1,040.67 1,042.058.7 1.4 ASE71-A SRG 1,023.95 1,016.97 1,016.817.1 -0.2 ASE72-A SRG 1,022.86 Dry ASE73-A SRG 1,023.14 1,007.45 1,010.1313.0 2.7 ASE75-A SRG 1,020.90 1,004.90 1,007.4913.4 2.6 ASE76-A SRG 1,015.48 1,001.11 1,002.8812.6 1.8 ASE77-A SRG 1,011.35 998.88 999.9511.4 1.1 ASE81-A SRG 1,051.43 1,041.07 1,042.588.9 1.5 ASE83-A SRG 1,027.72 1,010.61 1,014.1613.6 3.5	ASE66-A 1	SRG		1,052.46						
ASE69-A 1 SRG 1,054.16 1,043.45 1,044.729.4 1.3 ASE70-A 1 SRG 1,050.72 1,040.67 1,042.058.7 1.4 ASE71-A 1 SRG 1,023.95 1,016.97 1,016.817.1 -0.2 ASE72-A 1 SRG 1,022.86 Dry ASE73-A 1 SRG 1,023.14 1,007.45 1,010.1313.0 2.7 ASE75-A 1 SRG 1,020.90 1,004.90 1,007.4913.4 2.6 ASE76-A 1 SRG 1,015.48 1,001.11 1,002.8812.6 1.8 ASE77-A 1 SRG 1,011.35 998.88 999.9511.4 1.1 ASE81-A 1 SRG/CV 1,051.43 1,041.07 1,042.588.9 1.5 ASE83-A 1 SRG 1,027.72 1,010.61 1,014.1613.6 3.5	ASE67-A 1	SRG/BF		1,055.91	1,043.49	1,045.25		-10.7	1.8	
ASE70-A 1 SRG 1,050.72 1,040.67 1,042.058.7 1.4 ASE71-A 1 SRG 1,023.95 1,016.97 1,016.817.1 -0.2 ASE72-A 1 SRG 1,022.86 Dry13.0 2.7 ASE73-A 1 SRG 1,023.14 1,007.45 1,010.1313.0 2.7 ASE75-A 1 SRG 1,020.90 1,004.90 1,007.4913.4 2.6 ASE76-A 1 SRG 1,015.48 1,001.11 1,002.8812.6 1.8 ASE77-A 1 SRG 1,011.35 998.88 999.9511.4 1.1 ASE81-A 1 SRG/CV 1,051.43 1,041.07 1,042.588.9 1.5 ASE83-A 1 SRG 1,027.72 1,010.61 1,014.1613.6 3.5	ASE68-A 1	SRG/BF		1,051.93	1,013.77	1,042.00		-9.9	28.2	
ASE71-A	ASE69-A 1			1,054.16		1,044.72		-9.4	1.3	
ASE72-A 1 SRG 1,022.86 Dry ASE73-A 1 SRG 1,023.14 1,007.45 1,010.13 13.0 2.7 ASE75-A 1 SRG 1,020.90 1,004.90 1,007.49 13.4 2.6 ASE76-A 1 SRG 1,015.48 1,001.11 1,002.88 12.6 1.8 ASE77-A 1 SRG 1,011.35 998.88 999.95 11.4 1.1 ASE81-A 1 SRG/CV 1,051.43 1,041.07 1,042.58 8.9 1.5 ASE83-A 1 SRG 1,027.72 1,010.61 1,014.16 13.6 3.5	ASE70-A 1	SRG		1,050.72	1,040.67	1,042.05		-8.7	1.4	
ASE73-A 1 SRG 1,023.14 1,007.45 1,010.1313.0 2.7 ASE75-A 1 SRG 1,020.90 1,004.90 1,007.4913.4 2.6 ASE76-A 1 SRG 1,015.48 1,001.11 1,002.8812.6 1.8 ASE77-A 1 SRG 1,011.35 998.88 999.9511.4 1.1 ASE81-A 1 SRG/CV 1,051.43 1,041.07 1,042.588.9 1.5 ASE83-A 1 SRG 1,027.72 1,010.61 1,014.1613.6 3.5		SRG		1,023.95	1,016.97	1,016.81		-7.1	-0.2	
ASE75-A 1 SRG 1,020.90 1,004.90 1,007.4913.4 2.6 ASE76-A 1 SRG 1,015.48 1,001.11 1,002.8812.6 1.8 ASE77-A 1 SRG 1,011.35 998.88 999.9511.4 1.1 ASE81-A 1 SRG/CV 1,051.43 1,041.07 1,042.588.9 1.5 ASE83-A 1 SRG 1,027.72 1,010.61 1,014.1613.6 3.5		SRG		1,022.86		Dry				
ASE76-A 1 SRG 1,015.48 1,001.11 1,002.8812.6 1.8 ASE77-A 1 SRG 1,011.35 998.88 999.9511.4 1.1 ASE81-A 1 SRG/CV 1,051.43 1,041.07 1,042.588.9 1.5 ASE83-A 1 SRG 1,027.72 1,010.61 1,014.1613.6 3.5		SRG		1,023.14	1,007.45	1,010.13		-13.0	2.7	
ASE77-A 1 SRG 1,011.35 998.88 999.9511.4 1.1 ASE81-A 1 SRG/CV 1,051.43 1,041.07 1,042.588.9 1.5 ASE83-A 1 SRG 1,027.72 1,010.61 1,014.1613.6 3.5				1,020.90	1,004.90	1,007.49		-13.4	2.6	
ASE81-A SRG/CV 1,051.43 1,041.07 1,042.588.9 1.5 ASE83-A SRG 1,027.72 1,010.61 1,014.1613.6 3.5				1,015.48	1,001.11	1,002.88		-12.6		
ASE83-A SRG 1,027.72 1,010.61 1,014.1613.6 3.5		SRG		1,011.35	998.88	999.95				
		SRG/CV		1,051.43	1,041.07	1,042.58		-8.9	1.5	
ASE84-A ¹ SRG 1,031.27 1,013.59 1,017.3213.9 3.7				1,027.72	1,010.61	1,014.16		-13.6	3.5	
	ASE84-A 1	SRG		1,031.27	1,013.59	1,017.32		-13.9	3.7	

Table 3.3

Groundwater Elevations - September 2001, 2006, 2016 and 2017
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

		Gro	oundwater Ele	evation (ft AM	ISL)	Change in Groundwater Elevation (ft)			
Well ID	Hydrostrati- graphic Unit	September 2001	September 2006	September 2016	September 2017	September 2001 to September 2017	September 2006 to September 2017	September 2016 to September 2017	
SRG Wells (co	ont'd)								
ASE85-A 1	SRG		1,020.26	1,005.85	1,007.91		-12.4	2.1	
ASE86-A 1	SRG		1,018.25	1,004.91	1,006.66		-11.6	1.8	
ASE87-A 1	SRG		1,025.81	1,009.22	1,012.17		-13.6	2.9	
ASE89-A 1	SRG		1,048.08	1,029.91	1,034.08		-14.0	4.2	
ASE90-A 1	SRG		1,047.05	1,028.54	1,032.86		-14.2	4.3	
ASE91-A 1	SRG/BF		1,048.08	1033.15	1,036.46		-11.6	3.3	
ASE92-A 1	SRG/BF		1,048.48	1032.77	1,036.17		-12.3	3.4	
ASE95-A 1	SRG		1,037.00	1,017.72	1,021.77		-15.2	4.0	
ASE96-A 1	SRG		1,046.20	1,026.38	1,021.03		-25.2	-5.4	
ASE97-A 1	SRG		1,036.76						
ASE98-A 1	SRG		1,041.39	1,020.12	1,024.82		-16.6	4.7	
ASE99-A 1	SRG		1,043.34	1,021.61	1,026.60		-16.7	5.0	
ASE100-A 1	SRG		1,037.89	1,018.42	1,022.56		-15.3	4.1	
ASE101-A 1	SRG		1,041.34	1,020.21	1,024.73		-16.6	4.5	
ASE102-A 1	SRG		1,044.79	1,023.99	1,028.88		-15.9	4.9	
ASE103-A 1	SRG		1,036.07	1,017.24	1,021.18		-14.9	3.9	
ASE105-A 1	SRG		1,048.17	1,028.86	1,033.45		-14.7	4.6	
ASE106-A 1	SRG		1,046.11	1,025.63	1,030.54		-15.6	4.9	
ASE107-A 1	SRG		1,047.40	1,024.89	1,030.98		-16.4	6.1	
ASE108-A 1	SRG		1,047.13	1,034.26	1,036.87		-10.3	2.6	
ASE109-A 1	SRG		1,048.68						
ASE110-A 1	SRG		1,047.09	1,025.42	1,030.45		-16.6	5.0	
ASE111-A 1	SRG/BF		1,054.77	1,043.81	1,045.55		-9.2	1.7	
ASE112-A 1	SRG		1,048.18	1,029.14	1,032.93		-15.3	3.8	
ASE113-A 1	SRG/BF		1,048.70	1,026.35	1,031.54		-17.2	5.2	
ASE114-A 1	SRG/BF		1,048.11	1,026.30	1,031.57		-16.5	5.3	
ASE115-A ¹	SRG/BF		1,057.54	1,044.10	1,045.82		-11.7	1.7	
ASE116-A ¹	SRG			1,043.81	1,045.55			1.7	
ASE118-A ¹	SRG			1,028.85	1,028.73			-0.1	
ASE120 ¹	SRG/BF								
ASE122-A ¹	SRG/BF			1,026.73	1,032.20			5.5	
ASE123-A ¹	SRG/BF			1,027.02	1,032.46			5.4	
ASE124-A ¹	SRG			1,018.38	1,022.42			4.0	
ASE125-A ¹	SRG			1,015.62	1,019.31			3.7	
ASE126-A ¹	SRG			1,017.43	1,021.34			3.9	
ASE127-A ¹	SRG/BR			1,037.36	1,040.07			2.7	
ASE128-A ¹	SRG			1,020.12	1,024.54			4.4	
ASE129-A ¹	SRG			1,016.28	1,019.96			3.7	
ASE130-A	SRG/BF			1,035.76	1,038.56			2.8	
ASE131-A ¹	SRG				1,016.63				
BC03 ¹	SRG	1,054.90	1,051.19	1,040.61	1,042.25	-12.7	-8.9	1.6	
BC06 ¹	SRG/CV	1,052.23	1,049.07	1,038.33	1,040.22	-12.0	-8.8	1.9	
BC07-A 1	SRG/BF	1,053.29	1,055.23	Dry	Dry				
BC08-B ¹	SRG	1,048.21	1,046.66						
BC09 1	SRG	1,034.25	1,026.15	1,031.31	Dry				
BC10-A ¹	SRG	1,031.59	1,023.00	Dry	Dry				
BC12 ¹	SRG	1,046.50	1,045.08	1,052.37	1,049.04	2.5	4.0	-3.3	
BC16	SRG	1,054.81	1,050.14	1,040.16	1,041.52	-13.3	-8.6	1.4	
BC18 ¹	SRG	1,039.18	Dry						
BC18R ¹	SRG			1,017.04	1,021.03			4.0	

Table 3.3

Groundwater Elevations - September 2001, 2006, 2016 and 2017
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

		Gro	oundwater Ele	evation (ft AN	ISL)	Change in Groundwater Elevation (ft)			
Well ID	Hydrostrati- graphic Unit	September 2001	September 2006	September 2016	September 2017	September 2001 to September 2017	September 2006 to September 2017	September 2016 to September 2017	
SRG Wells (cor	nt'd)								
BR05 ²	SRG		1,051.07	Dry	Dry				
CRA01	SRG	1,024.48	1,012.15	1,002.42	1,002.48	-22.0	-9.7	0.1	
DM503	BF				1,094.38				
DM507-084 ²	SRG	1,056.88	1,052.25						
DM510-070 ²	SRG	, 	Dry	Dry	Dry				
DM510-110 ²	SRG	1,031.88	1,020.96	1,008.66	1,010.15	-21.7	-10.8	1.5	
DM511-065 ²	SRG	1,046.57	Dry	Dry	Dry				
DM512-060 ²	SRG			Dry	Dry				
DM512-090 ²	SRG		1,046.17	1,035.74	1,038.65		-7.5	2.9	
DM513-070 ²	SRG	1,058.33	Dry	Dry	Dry				
DM514-065 ²	SRG	1,044.16		Dry	Dry				
DM515-065 ²	SRG		Dry	Dry	Dry				
DM515-115 ²	SRG	1,026.80	1,015.31	1,005.65	1,006.73	-20.1	-8.6	1.1	
DM516-065 ²	SRG	1,040.78		Dry	Dry	-20.1			
DM516-003	SRG	1,040.70	1,016.32 ⁶	1,002.52	1,003.90	-24.0	-12.4	1.4	
DM517-070 ²	SRG		1,010.52	1,002.32 Dry	1,003.90 Dry	-24.0	-12.4		
DM517-070	SRG	1,031.43	1,022.10 ⁶	1,006.79	1,009.20	-22.2	-12.9	2.4	
DM517-123	SRG/BF/BR	1,031.43	1,022.10		1,009.20	-22.2	-12.9		
DW05	SRG/BF/BR SRG	1,029.72	983.49			 	 		
	SRG/BF			Dry	Dry				
EW03		1,053.25	1,048.01	1,037.98	1,039.50	-13.8	-8.5	1.5	
EW06	SRG	1,019.41	1,006.30	992.60	993.55	-25.9	-12.8	0.9	
EW07	SRG	1,023.95	1,007.20	997.08	997.55	-26.4	-9.7	0.5	
EW12-078	SRG	4 000 00							
EW12-093	SRG	1,020.38							
EW12-128	SRG	1,020.39							
EW13-118 ³	SRG	1,015.81	1,002.81	990.33	990.95	-24.9	-11.9	0.6	
EW13-168 ³	SRG			990.43	990.87			0.4	
EW19-S	SRG	1,009.25	996.91	Dry	Dry				
EW20 ³	SRG	1,006.42	994.10	Dry	982.71	-23.7	-11.4		
EW21 ³	SRG	1,011.25	998.57	Dry	Dry				
EW22-S	SRG	1,013.88	1,000.98	989.71	989.82	-24.1	-11.2	0.1	
EW23	SRG	1,019.95	1,007.81						
EWM	SRG/BF	1,022.53 5	992.56	972.51	973.51	-49.0	-19.1	1.0	
EWN	SRG/BF	1,022.98 5	996.98	970.18	947.58	-75.4	-49.4	-22.6	
EWS	SRG/BF/BR	1,020.07 ⁵	996.49	952.37	961.36	-58.7	-35.1	9.0	
EWSPZ1	SRG/BF		1,005.40	993.14	993.56		-11.8	0.4	
FDMW07	SRG	1,029.14							
MW01(HERTZ)	SRG								
MW05	SRG								
NW01	SRG	1,035.70	1,026.63	1,017.43	1,018.12	-17.6	-8.5	0.7	
NW02	SRG	1,019.98	1,004.13	993.85	994.02	-26.0	-10.1	0.2	
NW03	SRG	1,020.18	1,004.23	993.33	993.57	-26.6	-10.7	0.2	
NW04-S	SRG		1,004.71	992.91	992.96		-11.8	0.1	
NW05-S	SRG		1,004.98	994.87	993.59		-11.4	-1.3	
NW06-S	SRG		1,005.10	991.29	991.94		-13.2	0.7	
NW07-S	SRG		1,004.02	991.17	991.87		-12.2	0.7	
NW07-M	SRG		1,003.97	991.02	991.48		-12.5	0.5	
NW08-S	SRG		1,006.35	993.78	994.15		-12.2	0.4	
NW09-M	SRG		1,006.87	993.00	994.27		-12.6	1.3	
NW11-M	SRG		1,006.15	993.01	993.89		-12.3	0.9	

Table 3.3

Groundwater Elevations - September 2001, 2006, 2016 and 2017
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

		Gro	undwater Ele	evation (ft AN	ISL)	Change in Groundwater Elevation (ft)			
Well ID	Hydrostrati- graphic Unit	September 2001	September 2006	September 2016	September 2017	September 2001 to September 2017	September 2006 to September 2017	September 2016 to September 2017	
SRG Wells (co	ont'd)								
NW13-M	SRG		1,004.99	991.52	992.72		-12.3	1.2	
NW14-M	SRG		1,005.23	991.12	992.91		-12.3	1.8	
NW16-M	SRG			992.62	993.32			0.7	
NW18-S	SRG			991.43	991.88			0.5	
NW19-M	SRG			995.40	996.74			1.3	
NW21-S	SRG			1,009.65	1,010.45			0.8	
NW22-S	SRG			996.76	997.27			0.5	
NW23-S	SRG			998.38	999.63			1.3	
NW24-S	SRG			1,036.64	1,038.24			1.6	
NW25-S	SRG			1,041.79	1,043.48			1.7	
OU301-M ³	SRG		997.77	986.28	986.51		-11.3	0.2	
OU302-M ³	SRG		997.20	985.39	985.87		-11.3	0.5	
OU304-S ³	SRG		1,000.34	989.62	989.50		-10.8	-0.1	
OU305-M ⁴	SRG								
OU305-M2 ³	SRG/BF		990.85	979.77	980.21		-10.6	0.4	
OU305-MR ³	SRG		990.99	979.75	980.17		-10.8	0.4	
OU305-S 4	SRG								
OU305-SR ³	SRG		991.10	979.79	980.26		-10.8	0.5	
OU306-M ³	SRG		989.37	978.17	978.98		-10.4	0.8	
OU307-M2 ³	SRG		993.82	982.76	982.61		-11.2	-0.1	
OU307-M2	SRG		993.56	982.44	982.31		-11.3	-0.1	
OU308-M2 ³	SRG	 	982.97	971.54	971.55	 	-11.4	0.0	
OU308-N/2	SRG		982.35	970.94	971.56	 	-10.8	0.6	
OU309-M2 ³	SRG/BF		984.66	973.32	973.31		-11.4	0.0	
OU309-W2	SRG		984.40	973.32 973.45	973.27		-11.4 -11.1	-0.2	
OU310-M ³	SRG		978.53	966.79	967.70	 	-10.8		
OU310-M2 ³	SRG		978.79	967.07		 	-10.8	0.9 0.9	
OU310-W2	SRG			966.85	967.96 967.71		-10.6	0.9	
OU310-SK	SRG		984.61	973.08	974.29	 	-10.3	1.2	
OU311-W	SRG/BF		984.58		974.29	 	-10.3	1.2	
OU311-W2	SRG		984.72	973.03 973.17	974.27	 	-10.3 -10.4	1.2	
OU312-M	SRG		1,000.79	988.57	989.00		-11.8	0.4	
OU313-M	SRG		1,001.03	989.42	989.60		-11.4	0.2	
OU314-M	SRG		1,003.72	993.15	993.10		-10.6	0.0	
OU316-M ³ OU316-S ³	SRG			968.08	968.76			0.7	
OU316-S ³	SRG			968.11	968.82			0.7	
	SRG			981.00	981.75			0.8	
OU319-M ³	SRG			988.92	989.53			0.6	
OU320-S	SRG			993.59	994.80			1.2	
OU320-M	SRG			993.37	994.64			1.3	
PHXA03 ⁴	SRG/BR		1,016.90						
PHXA04 ⁴	SRG		1,013.70						
PHXA05 ⁴	SRG		1,013.20				 		
PHXA06	SRG		1,010.01	996.78	997.94		-12.1	1.2	
PL101-A ¹	SRG	1,056.07	1,056.74						
PL102-A ¹	SRG	1,059.59	1,058.63	Dry	1,047.55	-12.0	-11.1		
PL103-A ¹	SRG	1,054.00	1,050.47	1,039.77	1,041.59	-12.4	-8.9	1.8	
PL104-A 1	SRG	Dry	Dry	Dry	Dry				
PL105-A 1	SRG	1,049.37	1,047.37	Dry	Dry				
PL201-A ¹	SRG	1,051.78	1,048.58	1,037.88	1,039.71	-12.1	-8.9	1.8	

Table 3.3

Groundwater Elevations - September 2001, 2006, 2016 and 2017
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

		Gro	oundwater Ele	evation (ft AN	/ISL)	Change in Groundwater Elevation (ft)			
Well ID	Hydrostrati- graphic Unit	September 2001	September 2006	September 2016	September 2017	September 2001 to September 2017	September 2006 to September 2017	September 2016 to September 2017	
SRG Wells (co	nt'd)								
PL202-C 1 `	SRG	1,031.87	1,022.89	1,007.43	1,009.57	-22.3	-13.3	2.1	
PL202-S 1	SRG	1,032.11	Dry	Dry	Dry				
PL2101 ¹	SRG	1,054.98	1,051.67	1,040.42	1,040.32	-14.7	-11.4	-0.1	
PL2102 ¹	SRG	1,055.12	1,051.58	1,041.01	1,042.63	-12.5	-8.9	1.6	
PL2102-A 1	SRG								
PZ01-A	SRG	1,055.39	1,050.65	Dry	Dry				
PZ01-S	SRG	1,020.35	1,003.46	993.74	993.92	-26.4	-9.5	0.2	
PZ02-S	SRG	1,020.15	1,003.31	993.65	993.68	-26.5	-9.6	0.0	
SCMW-1D ³	SRG	, 	1,001.36	989.18	989.88		-11.5	0.7	
TEW01	SRG	1,020.21	1,003.36	993.81	993.86	-26.4	-9.5	0.1	
TT02 ³	SRG	1,009.06	997.02						
TT05 ³	SRG	1,014.24							
		.,•							
BF Wells	DE/DD	4 055 75		4 044 00	4 0 4 0 0 7	40.7		4.0	
ASE19-B ¹	BF/BR	1,055.75		1,041.30	1,043.07	-12.7		1.8	
ASE22-B ¹	BF/CV/BR	1,034.09	1,026.47	1,010.28	1,013.60	-20.5	-12.9	3.3	
ASE29-A 1	BF/CV	1,035.90	1,032.93	Dry	Dry				
ASE40-B ¹	BF	1,051.38	1,049.32	1,035.57	1,038.36	-13.0	-11.0	2.8	
ASE41-B 1	BF	1,052.99	1,050.67	1,038.81	1,040.28	-12.7	-10.4	1.5	
ASE44-B ¹	BF	1,055.27	1,052.28	1,040.76	1,042.64	-12.6	-9.6	1.9	
ASE45-B ¹	BF	1,054.83	1,052.14	1,040.14	1,042.17	-12.7	-10.0	2.0	
ASE46-B ¹	BF	1,051.92	1,049.17	1,037.61	1,039.87	-12.0	-9.3	2.3	
ASE48-B 1	BF	1,055.85	1,052.98	1,041.35	1,043.21	-12.6	-9.8	1.9	
ASE49-B 1	BF	1,056.06	1,053.64	1,041.87	1,043.63	-12.4	-10.0	1.8	
ASE72-B 1	BF/CV/BR		1,022.86	1,008.18	1,010.22		-12.6	2.0	
ASE73-B 1	BF		1,023.20	1,007.48	1,010.20		-13.0	2.7	
ASE76-B 1	BF		1,015.22	1,000.85	1,002.64		-12.6	1.8	
ASE77-B 1	BF		1,010.64	998.03	999.12		-11.5	1.1	
ASE78-B 1	BF		1,009.77	996.63	997.83		-11.9	1.2	
ASE83-B 1	BF		1,027.41	1,010.61	1,014.11		-13.3	3.5	
ASE85-B 1	BF		1,020.16	1,005.83	1,007.83		-12.3	2.0	
ASE88-B 1	BF		1,011.36	996.94	998.52		-12.8	1.6	
ASE120-B 1	BF/BR			1,011.97	1,010.76			-1.2	
BC01 ¹	BF	1,058.84	1,057.83	1,046.46	1,046.46	-12.4	-11.4	0.0	
BC02 ¹	BF	1,056.08	1,056.53	1,042.98	1,045.01	-11.1	-11.5	2.0	
BC04 ¹	BF	1,054.67	1,051.26	1,040.50	1,042.09	-12.6	-9.2	1.6	
BC08-A 1	BF	1,048.31	1,046.86	1,030.67	1,034.49	-13.8	-12.4	3.8	
BC10-B 1	BF	1,031.18	1,022.46	1,006.29	1,008.89	-22.3	-13.6	2.6	
BC11-A 1	BF/CV	1,029.76	1,019.52	1,004.61	1,006.66	-23.1	-12.9	2.0	
BC11-B 1	BF	1,029.20	1,018.47	1,003.88	1,005.80	-23.4	-12.7	1.9	
BC13 ¹	BF	1,077.30	1,083.58	1,063.96	1,065.34	-12.0	-18.2	1.4	
BC14 1	BF	1,080.02	1,084.28	1,064.99	1,065.99	-14.0	-18.3	1.0	
BC15 1	BF	1,059.12	1,056.18	1,045.29	1,046.54	-12.6	-9.6	1.3	
BC17 ¹	BF/CV	1,056.22	1,052.17	1,041.86	1,043.34	-12.9	-8.8	1.5	
DM118 ²	BF	1,125.78	1,119.68		1,114.63	-11.1	-5.0		
DM119-072 ²	BF		1,107.26		1,101.31		-6.0		
DM119-098 ²	BF		1,107.38		1,101.17		-6.2		
DM110 ²	BF	1,098.63	1,093.67		1,084.58	-14.1	-9.1		
DM122-A ²	BF	1,096.03	1,093.07		1,004.56 Dry	-14.1	-9.1	 	
DM122-A	BF					 -17.1	-17.5		
DM501-147 ²		1,085.21	1,085.58	 1 057 01	1,068.07			 1.0	
DIVIDU 1-147	BF	1,072.90	1,069.37	1,057.91	1,058.95	-14.0	-10.4	1.0	

Table 3.3

Groundwater Elevations - September 2001, 2006, 2016 and 2017
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

		Groundwater Elevati			(ISL)	Change in Groundwater Elevation (ft)			
Well ID	Hydrostrati- graphic Unit	September 2001	September 2006	September 2016	September 2017	September 2001 to September 2017	September 2006 to September 2017	September 2016 to September 2017	
BF Wells (conf	:'d)								
DM501-202 ²	BF	1,072.81	1,069.18	1,057.77	1,058.84	-14.0	-10.3	1.1	
DM502-079 ²	BF	1,093.58	1,089.83	, 	Dry				
DM502-119 ²	BF	1,093.60	1,089.88		1,078.49	-15.1	-11.4		
DM504 ²	BF/BR	1,076.67	1,074.17	1,061.34	1,061.96	-14.7	-12.2	0.6	
DM506-100 ²	BF	1,064.19	1,062.41	1,051.65	1,052.50	-11.7	-9.9	0.8	
DM506-185 ²	BF	1,064.23	1,062.55	1,051.53	1,052.57	-11.7	-10.0	1.0	
DM508 ²	BF/CV	1,065.54	1,065.92	1,055.20	1,056.41	-9.1	-9.5	1.2	
DM509 ²	BF	1,052.86	1,047.59	1,037.61	1,039.09	-13.8	-8.5	1.5	
DM511-110 ²	BF	1,045.18	1,037.38	1,028.37	1,029.38	-15.8	-8.0	1.0	
DM511-135 ²	BF								
DM512-155 ²	BF		1,046.20	1,035.90	1,039.57		-6.6	3.7	
DM513-145 ²	BF	1,058.22	1,053.23	1,042.16	1,043.56	-14.7	-9.7	1.4	
DM513-195 ²	BF	1,058.29	1,053.76	1,042.77	1,044.02	-14.3	-9.7	1.3	
DM515-210	BF	1,027.60	1,015.66	1,003.49	1,004.52	-23.1	-11.1	1.0	
DM516-210 ²	BF	1,027.91	1,016.32 ⁶	1,002.60	1,003.98	-23.9	-12.3	1.4	
EW02 ²	BF	1,075.59	1,074.37	1,061.66	1,062.28	-13.3	-12.1	0.6	
EW12-180 ³	BF	1,020.00							
EW12-227 ³	BF	1,020.03							
EW12-239 ³	BF	1,020.14							
EW13-228 ³	BF	1,016.90	1,005.15	992.25	992.83	-24.1	-12.3	0.6	
EW13-268 ³	BF	1,016.95	1,005.79	992.95	993.50	-23.4	-12.3	0.5	
EW13-300 ³	BF	1,010.93				-23.4	-12.3	0.5 	
EW19-D	BF	1,017.12	1,003.68	991.76	992.43	-20.5	-11.3	0.7	
EW22-D	BF	1,012.93	1,003.88	996.51	996.94	-20.6	-11.4	0.4	
NW04-D	BF	1,017.56	1,006.36	993.38	990.94		-12.3	-0.8	
NW04-D NW06-D	BF		1,004.92	993.36	992.63	 	-12.3 -13.2	-0.4	
	BF		•						
NW07-D			1,004.44	992.49	991.88		-12.6	-0.6	
NW08-M	BF		1,006.23	993.23	993.58		-12.7	0.4	
NW08-D	BF		1,007.92	996.33	995.83		-12.1	-0.5	
NW09-D NW09-D2	BF		1,006.53	992.90	994.07		-12.5	1.2	
	BF		1,006.40	993.32	993.95		-12.4	0.6	
NW10-D	BF		1,007.21	993.28	994.56		-12.7	1.3	
NW11-D	BF		1,006.00	992.78	993.79		-12.2	1.0	
NW12-D	BF		1,018.00	1,007.13	1,006.98		-11.0	-0.1	
NW13-D	BF		1,005.06	991.72	992.75		-12.3	1.0	
NW14-D	BF		1,005.29	992.03	992.96		-12.3	0.9	
NW16-D	BF			993.23	994.11			0.9	
NW19-D	BF			995.38	996.59			1.2	
NW22-D	BF			996.07	996.55			0.5	
NW23-D	BF			997.25	998.51			1.3	
NW24-D	BF			1,036.74	1,038.28			1.5	
NW27-D ¹	BF				1,007.50				
OU301-D ³	BF		1,005.80	994.94	995.61		-10.2	0.7	
OU305-D ³	BF								
OU305-DR ³	BF		995.21	983.81	984.55		-10.7	0.7	
OU306-D ³	BF		992.37	980.72	981.66		-10.7	0.9	
OU308-D ³	BF		984.58	972.91	973.61		-11.0	0.7	
OU312-D	BF		1,005.00	992.52	993.26		-11.7	0.7	
OU313-D	BF		1,003.36	991.90	992.04		-11.3	0.1	
OU314-D	BF		1,012.48	1,001.16	1,001.83		-10.7	0.7	

Table 3.3

Groundwater Elevations - September 2001, 2006, 2016 and 2017
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

		Gro	oundwater Ele	evation (ft AN	/ISL)	Change in Groundwater Elevation (ft)			
Well ID	Hydrostrati- graphic Unit	September 2001	September 2006	September 2016	September 2017	September 2001 to September 2017	September 2006 to September 2017	September 2016 to September 2017	
BF Wells (con	t'd)								
PL202-N 1	BF	1,031.53	1,022.36	1,006.79	1,009.11	-22.4	-13.3	2.3	
PL2103 ¹	BF	1,057.57	1,054.26	1,043.69	1,044.98	-12.6	-9.3	1.3	
PZ01-B	BF	1,055.37	1,050.66	1,040.51	1,041.95	-13.4	-8.7	1.4	
BR Wells									
ASE19-C 1	BR	1,055.91	1,053.02	1,041.46	1,043.23	-12.7	-9.8	1.8	
ASE20-B 1	BR	1,054.68	1,051.77	1,040.17	1,042.01	-12.7	-9.8	1.8	
ASE20-C 1	BR	1,054.57	1,051.65	1,040.06	1,041.92	-12.6	-9.7	1.9	
ASE21-C 1	BR	1,060.25	1,058.75	1,048.53	1,049.27	-11.0	-9.5	0.7	
ASE22-C 1	BR	1,034.27	1,026.66	1,010.83	1,014.11	-20.2	-12.6	3.3	
ASE24-C 1	BR	1,052.29	1,048.53	1,038.12	1,040.08	-12.2	-8.5	2.0	
ASE25-C 1	BR	1,046.79	1,040.35	1,054.14	1,064.09	17.3	23.7	9.9	
ASE42-C ¹	BR	1,039.47	1,035.46	Dry	Dry				
ASE43-C ¹	BR	1,054.14	1,051.10	1,039.68	1,041.59	-12.6	-9.5	1.9	
ASE50-C ¹	BR	1,056.10	1,053.68	1,042.15	1,043.81	-12.3	-9.9	1.7	
ASE73-C ¹	BR		1,023.37	1,007.63	1,010.37		-13.0	2.7	
ASE75-C ¹	BR		1,020.29	1,004.51	1,006.90		-13.4	2.4	
ASE79-C ¹	BR		1,050.65	1,042.19	1,042.71		-7.9	0.5	
ASE82-C 1	BR		1,035.44	1,042.19	1,050.83		15.4	7.0	
ASE83-C ¹	BR	 	1,033.44	1,043.79	1,013.79		-13.2	3.5	
ASE84-C ¹	BR		1,030.93	1,010.52	1,013.79	 	-13.9	3.5	
BC08-C 1	BR	 	1,030.93	1,013.59	1,017.05	 	-10.4	3.8	
BC06-C			•	•					
BR01 ²	BR		1,022.09	1,005.93	1,008.56		-13.5	2.6	
BR02 ²	BR		1,043.84	1,034.92	1,036.35		-7.5	1.4	
BR02 BR03 ²	BR		1,044.61	1,031.35	1,033.49		-11.1	2.1	
BR03 ²	BR								
	BR		1,050.35	1,055.89	1,048.39		-2.0	-7.5	
DM119-137 ²	BR		1,107.43		1,101.18		-6.3		
DM119-204 ²	BR		1,109.33		1,105.85		-3.5		
DM119-244 ²	BR		1,111.54		1,106.40		-5.1		
DM119-284 ²	BR		1,111.55		1,106.41		-5.1		
DM501-267 ²	BR	1,073.10	1,069.97	1,078.98	1,059.23	-13.9	-10.7	-19.8	
DM501-331 ²	BR	1,074.12	1,071.19	1,059.32	1,060.27	-13.8	-10.9	1.0	
DM501-387 ²	BR	1,075.38	1,072.72	1,060.54	1,061.37	-14.0	-11.4	0.8	
DM502-161 ²	BR	1,094.63	1,091.19		1,079.88	-14.8	-11.3		
DM502-240 ²	BR	1,094.94	1,091.63		1,080.45	-14.5	-11.2		
DM502-335 ²	BR	1,095.01	1,091.99		1,090.11	-4.9	-1.9		
DM506-240 ²	BR	1,065.07	1,062.55	1,052.36	1,053.17	-11.9	-9.4	0.8	
DM506-305 ²	BR	1,065.80	1,063.94	1,052.71	1,053.68	-12.1	-10.3	1.0	
DM506-375 ²	BR	1,066.86	1,065.06	1,053.62	1,053.54	-13.3	-11.5	-0.1	
DM507-240 ²	BR	1,056.89	1,052.16						
DM507-280 ²	BR	1,056.83	1,052.06						
DM507-315 ²	BR	1,056.82	1,052.11						
DM510-175 ²	BR	1,031.87	1,021.22	1,009.06	1,010.50	-21.4	-10.7	1.4	
DM510-235 ²	BR	1,032.27	1,021.62	1,009.68	1,011.08	-21.2	-10.5	1.4	
DM510-290 ²	BR	1,032.35	1,021.94	1,010.12	1,011.50	-20.8	-10.4	1.4	
DM511-165 ²	BR	1,045.25	1,037.47	1,028.26	1,029.33	-15.9	-8.1	1.1	
DM511-225 ²	BR	1,045.66	1,037.94	1,028.67	1,029.80	-15.9	-8.1	1.1	
DM511-290 ²	BR	1,045.61	1,037.91	1,028.69	1,029.81	-15.8	-8.1	1.1	
DM512-225 ²	BR		1,046.84	1,036.49	1,046.40		-0.4	9.9	
DM512-295 ²	BR		1,047.09	1,036.57	1,039.54		-7.5	3.0	
GHD 013932 (41)								

Table 3.3

Groundwater Elevations - September 2001, 2006, 2016 and 2017
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

		Gro	undwater Ele	evation (ft AM	(ISL)	Change in Groundwater Elevation (ft)			
Well ID	Hydrostrati- graphic Unit	September 2001	September 2006	September 2016	September 2017	September 2001 to September 2017	September 2006 to September 2017	September 2016 to September 2017	
BR Wells (con	t'd)								
DM512-345 ²	BR		1,048.12	1,037.62	1,049.26		1.1	11.6	
DM513-240 ²	BR	1,058.88	1,053.68	1,042.68	1,044.11	-14.8	-9.6	1.4	
DM513-280 ²	BR	1,058.65	1,053.60	1,042.54	1,043.92	-14.7	-9.7	1.4	
DM513-315 ²	BR	1,058.57	1,053.66	1,042.15	1,043.70	-14.9	-10.0	1.5	
DM514-105 ²	BR	1,030.69	1,020.18 ⁶	1,007.07	1,008.34	-22.4	-11.8	1.3	
DM514-180 ²	BR	1,031.15	1,020.38 ⁶	1,007.11	1,008.65	-22.5	-11.7	1.5	
DM514-240 ²	BR	1,031.11		1,007.22	1,008.74	-22.4		1.5	
DM514-295 ²	BR	1,031.11		1,007.22	1,008.88	-22.2		1.7	
DM515-265 ²	BR	1,028.04	1,015.62	1,003.10	1,004.31	-23.7	-11.3	1.2	
DM515-320 ²	BR	1,026.87	1,015.71	1,002.95	1,004.36	-22.5	-11.4	1.4	
DM515-380 ²	BR	1,027.80	1,015.65	1,003.05	1,004.01	-23.8	-11.6	1.0	
DM516-295 ²	BR	1,028.02	1,016.26 ⁶	1,002.60	1,004.43	-23.6	-11.8	1.8	
DM516-335 ²	BR			1,002.55	1,004.24			1.7	
DM516-390 ²	BR			1,002.75	1,004.25			1.5	
DM517-235 ²	BR	1,031.27	1,021.56 ⁶	1,006.57	1,008.83	-22.4	-12.7	2.3	
DM517-315 ²	BR	1,030.98		1,006.43					
DM517-365 ²	BR	1,031.20			1,008.76	-22.4			
PL103-C 1	BR		1,049.95	1,039.34	1,041.05		-8.9	1.7	
PZ01-D	BR	1,020.39	1,003.45	993.70	993.89	-26.5	-9.6	0.2	
PZ02-D	BR	1,020.13	1,003.35	993.68	993.70	-26.4	-9.6	0.0	
CV Wells									
ASE23-B 1	CV/BR	1,031.52	1,022.54	1,006.74	1,009.14	-22.4	-13.4	2.4	
ASE43-B 1	CV/BR	1,054.21	1,051.38	1,039.74	1,041.67	-12.5	-9.7	1.9	
ASE47-B 1	CV	1,031.49	1,022.68	1,006.70	1,009.49	-22.0	-13.2	2.8	
ASE71-B 1	CV		1,023.98	1,017.01	1,013.69		-10.3	-3.3	
ASE75-B 1	CV/BR		1,020.35	1,004.65	1,006.96		-13.4	2.3	
DM505 ²	CV/BR	1,068.69	1,063.28	1,051.12	1,052.36	-16.3	-10.9	1.2	
DM507-188 ²	CV	1,057.02	1,052.21						
DM517-185 ²	CV	1,031.37	1,022.06 ⁶	1,006.75	1,009.07	-22.3	-13.0	2.3	
NW15-S	CV			996.27	Dry				
NW17-S	CV			992.17	992.45			0.3	
NW18-M	CV			991.58	991.92			0.3	

Notes:

ft - feet

A negative value indicates a decrease in water level (e.g., - 6.71)

AMSL - above mean sea level "--" - No data

A positive value indicates an increase in water level (e.g., 6.71)

SRG - Salt River Gravel

Data collected by CH2MHILL on behalf of Honeywell
 Data collected by Clear Creek Associates on behalf of Freescale

BF - Basin Fill BR - Bedrock

CV - Colluvium

³ Data collected by ERM on behalf of OU3 Working Parties

Data collected by Arcadis Inc. on behalf of City of Phoenix
 Water level measured 07/09/01

⁶ Data collected by LFR, Inc. on behalf of ADEQ

Table 3.4

Groundwater Sample Key - September and October 2017 52nd Street Superfund Site, OU2 Area Phoenix, Arizona

Sample ID *	Well ID	Date	Comments
GW-090617-PG-01	NW04-D	09/06/17	Rinse Blank
GW-090617-PG-02	NW04-D	09/06/17	
GW-090717-PG-03	NW09-M	09/07/17	
GW-090817-PG-04	NW02	09/08/17	
GW-090817-PG-05	NW02	09/08/17	Duplicate
GW-090817-PG-06	CRA01	09/08/17	Field Blank
GW-090817-PG-07	CRA01	09/08/17	
GW-091117-PG-08	NW09-D2	09/11/17	
GW-091117-PG-09	NW08-D	09/11/17	Grab Sample (Pump)
GW-091117-PG-10	NW04-S	09/11/17	Grab Sample (Bailer)
GW-091117-PG-11	NW07-S	09/11/17	Grab Sample (Bailer)
GW-091217-PG-12	NW05-S	09/12/17	
GW-091217-PG-13	NW07-D	09/12/17	
GW-091217-PG-14	NW19-M	09/12/17	
GW-091217-PG-15	NW19-M	09/12/17	Duplicate
GW-091317-PG-16	NW07-M	09/13/17	Grab Sample (Pump)
GW-091317-PG-17	NW09-D	09/13/17	
GW-091317-PG-18	NW21-S	09/13/17	Rinse Blank
GW-091317-PG-19	NW21-S	09/13/17	
GW-091417-PG-20	NW10-D	09/14/17	Rinse Blank
GW-091417-PG-21	NW10-D	09/14/17	
GW-091417-PG-22	NW23-S	09/14/17	
GW-091417-PG-23	NW01	09/14/17	
GW-091417-PG-24	NW25-S	09/14/17	
GW-091417-PG-25	NW25-S	09/14/17	Duplicate
GW-091517-PG-26	NW11-M	09/15/17	
GW-091817-PG-27	NW23-D	09/18/17	Field Blank
GW-091817-PG-28	NW23-D	09/18/17	
GW-091817-PG-29	NW08-S	09/18/17	Grab Sample (Bailer)
GW-091917-PG-30	NW22-D	09/19/17	MS/MSD
GW-091917-PG-31	NW11-D	09/19/17	Grab Sample (Pump)
GW-091917-PG-32	NW06-D	09/19/17	
GW-091917-PG-33	NW18-S	09/19/17	Rinse Blank
GW-091917-PG-34	NW18-S	09/19/17	
GW-091917-PG-35	NW06-S	09/19/17	Grab Sample (Bailer)
GW-092017-PG-36	NW19-D	09/20/17	
GW-092017-PG-37	NW22-S	09/20/17	
GW-092017-PG-38	NW08-M	09/21/17	Grab Sample (Pump)
GW-092117-PG-39	NW03	09/21/17	Field Blank
GW-092117-PG-40	NW03	09/21/17	
GW-092117-PG-41	NW17-S	09/21/17	MS/MSD

Groundwater Sample Key - September and October 2017 52nd Street Superfund Site, OU2 Area

Table 3.4

Phoenix, Arizona

Sample ID *	Well ID	Date	Comments
GW-092117-PG-42	NW24-S	09/21/17	
GW-092117-PG-43	NW24-S	09/21/17	Duplicate
GW-092117-PG-44	EW03	09/21/17	
GW-092217-PG-45	NW24-D	09/22/17	Rinse Blank
GW-092217-PG-46	NW24-D	09/22/17	
GW-092217-PG-47	DM509	09/22/17	Field Blank
GW-092217-PG-48	DM509	09/22/17	
GW-092517-PG-49	NW13-M	09/25/17	Rinse Blank (rental 2")
GW-092517-PG-50	NW13-M	09/25/17	
GW-092517-PG-51	NW14-M	09/25/17	
GW-092617-PG-52	NW13-D	09/26/17	
GW-092617-PG-53	EW07	09/26/17	Rinse Blank (rental 2")
GW-092617-PG-54	EW07	09/26/17	
GW-092617-PG-55	EW06	09/26/17	
GW-092717-PG-56	NW14-D	09/27/17	
GW-092717-PG-57	BC-16	09/27/17	
GW-092717-PG-58	NW16-D	09/27/17	
GW-092717-PG-59	NW16-D	09/27/17	Duplicate
GW-092817-PG-60	NW16-M	09/28/17	MS/MSD
GW-092817-PG-61	PZ01-B	09/28/17	
GW-100317-PG-62	NW12-D	10/03/17	
GW-100417-PG-63	NW03	10/04/17	
GW-100517-PG-64	EW22-S	10/05/17	Grab Sample (Bailer)
GW-101617-PG-65	EW22-D	10/16/17	Rinse Blank
GW-101617-PG-66	EW22-D	10/16/17	

Notes:

 ${\sf MS/MSD-Matrix\ Spike/\ Matrix\ Spike\ Duplicate\ Sample}$

* Samples collected by GHD.

Table 3.5

Summary of Monitor Well Development Area - September and October 2017
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

Well ID	Sample ID	Hydrogeologic Unit Sampled	Date Purged/ Sampled	Pump Inlet Depth (ft below TOC)	Total Purged Volume (Gallons)	pH (s.u.)	Temperature (°F)	Conductivity (µs/cm)
BC-16	GW-092816-PG-64	SRG	09/28/16	80	20	6.81	81.6	1,666
	0.1. 0020.0.1 0 0.	5.1.5	00,20,10		_0	6.87	80.5	1,654
CRA-01	GW-090817-PG-07	SRG	09/08/17	124	50	7.69	81.5	1,797
Field Blank	GW-090817-PG-06		09/08/17			7.36	80.3	2,009
						7.25	80.4	2,033
						7.26	80.6	2,042
						7.23	81.7	2,025
DM509	GW-092217-PG-48	BF	09/22/17	165	200	7.22	77.8	1,483
Field Blank	GW-092217-PG-47		09/22/17			7.02	77.9	1,499
						7.25	78.8	1,502
						7.34	78.2	1,513
						7.40	78.5	1,507
EW03	GW-092117-PG-44	SRG/BF	09/21/17	97	70	7.39	80.8	1,589
						7.19	80.5	1,530
						7.32	79.6	1,630
						7.28	79.8	1,542
						7.58	79.1	1,540
EW06	GW-092617-PG-55	SRG	09/26/17	108	25	6.93	82.8	1,323
						6.99	81.7	1,315
						6.93	81.7	1,313
						7.00	80.9	1,324
						7.01	80.8	1,326
EW07	GW-092617-PG-54	SRG	09/22/17	127	50	7.20	77.6	1,740
Rinse Blank	GW-092617-PG-53					7.15	79.2	1,772
						7.07	79.3	1,775
						7.05	79.3	1,798
						7.06	79.2	1,780
EW22-D	GW-101617-PG-66	BF	10/16/17	420	750	6.60	83.4	1,836
Rinse Blank	GW-101617-PG-65					7.14	82.1	1,874
						7.02	83.5	1,891
						7.19	83.1	1,899
						7.23	82.2	1,882
EW22-S	GW-100517-PG-64	SRG	10/05/17	10	10	7.11	83.0	2,173
						7.05	82.3	2,152
						7.07	82.2	2,147
						7.06	82.4	2,130
						7.04	82.7	2,124

Table 3.5

Summary of Monitor Well Development Area - September and October 2017
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

Well ID	Sample ID	Hydrogeologic Unit Sampled	Date Purged/ Sampled	Pump Inlet Depth (ft below TOC)	Total Purged Volume (Gallons)	pH (s.u.)	Temperature (°F)	Conductivity (µs/cm)
NW01	GW-091417-PG-23	SRG	09/14/17	105	40	7.04	81.6	2,209
						7.07	79.9	2,241
						7.12	79.3	2,235
						7.12	78.6	2,236
						7.13	78.5	2,238
NW02	GW-090817-PG-04	SRG	09/08/17	205	170	7.33	77.6	2,024
Duplicate	GW-090817-PG-05		09/08/17			7.28	77.9	2,072
						7.26	77.9	2,081
						7.27	78.1	2,080
						7.22	78.6	2,088
NW03	GW-092117-PG-40	SRG	09/21/17	140	80	7.19	79.1	1,376
Field Blank	GW-092117-PG-39		09/21/17			7.30	78.6	1,391
Resample	GW-100417-PG-63		10/04/17			7.20	78.6	1,394
•						7.11	78.9	1,385
						7.32	78.2	1,400
NW04-S	GW-091117-PG-10	SRG	09/11/17	128	20	8.21	82.2	1,771
Well purge	ed dry @ 20 gallons					8.35	83.0	1,765
NW04-D	GW-090617-PG-02	BF	09/06/17	195	200	7.03	84.0	3,309
	GW-090617-PG-01		09/06/17		_00	7.05	81.3	3,304
	311 000011 1 3 01		00/00/11			6.98	81.7	3,323
						7.07	81.3	3,434
						6.65	81.5	3,698
NW05-S	GW-091217-PG-12	SRG	09/12/17	126	50	8.07	81.4	2,003
						7.33	80.9	2,109
						7.03	81.5	2,309
						6.82	82.2	2,326
						8.76	81.3	2,281
NW06-S	GW-091917-PG-35	SRG	09/19/17	126	20	8.24	83.6	1,105
Well dry @ 2						7.34	80.7	1,294
NW06-D	GW-091917-PG-32	BF	09/19/17	190	200	7.34	82.7	1,700
						7.24	71.4	1,671
						7.28	80.5	1,694
						7.24	81.0	1,679
						7.17	79.7	1,651
NW07-M	GW-091317-PG-16	SRG	09/13/17	190	75	9.02	85.9	1,183
Well purge 013932 (41)	ed dry @ 75 gallons					7.40	80.7	1,448

Table 3.5

Summary of Monitor Well Development Area - September and October 2017
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

Well ID Sample ID NW07-S GW-091117-PG-1		Hydrogeologic Unit Sampled	Date Purged/ Sampled	Pump Inlet Depth (ft below TOC)	Total Purged Volume (Gallons)	pH To	emperature (°F)	Conductivity (µs/cm)
NW07-S Well purg	GW-091117-PG-11 ed dry @ 25 gallons	SRG	09/11/17	128	25	7.19 7.13	83.9 85.8	1,270 1,238
NW07-D	GW-091217-PG-13	BF	09/12/17	225	270	8.20 7.67 7.46 7.51 7.45	81.5 80.4 80.6 81.0 80.6	1,387 1,410 1,423 1,443 1,419
NW08-M Well purg	GW-092017-PG-38 ed dry @ 80 gallons	BF	09/21/17	193	80	8.84 8.69 7.62	83.0 84.4 77.6	1,181 1,161 1,352
NW08-S Well purg	GW-091817-PG-29 ed dry @ 40 gallons	SRG	09/18/17	130	40	8.93 8.80 7.64	83.6 82.8 79.4	1,322 1,118 1,708
NW08-D Well purg	GW-091117-PG-09 ed dry @ 110 gallons	BF	09/11/17	235	110	8.27 8.56 7.32	80.4 80.1 82.7	2,058 2,039 2,446
NW09-M	GW-090717-PG-03	SRG	09/07/17	180	175	7.55 7.26 7.29 7.33 7.33	82.8 83.8 83.4 82.9 83.4	1,441 1,495 1,495 1,487 1,475
NW09-D	GW-091317-PG-17	BF	09/13/17	220	50	7.69 7.36 7.25 7.26 7.23	81.5 80.3 80.4 80.6 81.7	1,797 2,009 2,033 2,042 2,005
NW09-D2	GW-091117-PG-08	BF	09/11/17	250	300	7.35 7.31 7.29 7.35 7.30	79.4 79.8 80.3 81.6 80.6	1,458 1,382 1,362 1,390 1,380
NW10-D Rinse Blank	GW-091417-PG-21 GW-091417-PG-20	BF	09/14/17 09/14/17	220	250	7.54 7.51 7.37 7.32 7.30	78.8 78.8 78.9 79.0 78.6	1,281 1,231 1,260 1,266 1,273

Table 3.5

Summary of Monitor Well Development Area - September and October 2017
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

Well ID	Sample ID	Hydrogeologic Unit Sampled	Date Purged/ Sampled	Pump Inlet Depth (ft below TOC)	Total Purged Volume (Gallons)	pH (s.u.)	Temperature (°F)	Conductivity (µs/cm)
NW11-M	GW-091517-PG-26	SRG	09/15/17	183	180	9.50	78.2	1,263
						8.60	78.9	1,427
						8.30	79.1	1,490
						8.24	79.2	1,521
						8.32	79.5	1,413
NW11-D	GW-091917-PG-31	BF	09/19/17	220	120	8.04	78.3	1,263
Well purge	ed dry @ 120 gallons					7.83	80.6	1,320
						7.64	80.6	1,209
NW12-D	GW-100317-PG-62	BF	10/03/17	220	450	6.28	79.1	3,724
						6.44	80.5	3,605
						6.48	82.2	3,611
						6.6	81.9	3,496
NW13-M	GW-092517-PG-50	BF	09/25/17	185	50	7.24	78.9	1,138
Rinse Blank	GW-092517-PG-49		09/25/17			7.21	79.7	1,133
						7.18	79.8	1,138
						7.16	79.9	1,139
						7.21	80.4	1,124
NW13-D	GW-092617-PG-52	BF	09/26/17	225	52	7.52	76.0	1,197
						7.36	77.9	1,169
						7.38	77.7	1,170
						7.34	77.9	1,168
NW14-M	GW-092517-PG-51	BF	09/25/17	185	50	7.10	81.4	1,222
						7.16	80.9	1,232
						7.11	80.9	1,221
						7.14	81.2	1,217
						7.15	80.9	1,218
NW14-D	GW-092717-PG-56	BF	09/27/17	225	75	7.35	78.1	1,182
						7.34	78.8	1,176
						7.31	79.5	1,181
						7.32	79.4	1,183
						7.41	79.6	1,179
NW16-M	GW-092817-PG-60	BF	09/28/17	171	60	9.01	81.5	1,340
(MS/MSD)						8.71	81.4	1,377
						8.26	81.7	1,411
						8.27	81.4	1,412
						7.62	81.3	1,422

Table 3.5

Summary of Monitor Well Development Area - September and October 2017
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

Well ID	Sample ID	Hydrogeologic Unit Sampled	Date Purged/ Sampled	Pump Inlet Depth (ft below TOC)	Total Purged Volume (Gallons)	pH (s.u.)	Temperature (°F)	Conductivity (µs/cm)
NW16-D Duplicate	GW-092717-PG-58 GW-092717-PG-59	BF	09/27/17 09/27/17	226	65	7.25 7.27 7.26 7.26 7.36	81.3 80.1 80.0 79.7 79.0	1,622 1,626 1,627 1,627 1,615
NW17-S (MS/MSD)	GW-092117-PG-41	Colluvium	09/21/17	140	90	7.16 7.20 7.22 7.19 7.23	79.2 78.9 79.0 78.8 78.6	2,047 2,100 2,096 2,103 2,090
NW18-S Rinse Blank	GW-091917-PG-34 GW-091917-PG-27	SRG	09/19/17 09/19/17	125	55	7.30 7.23 7.28 7.26 7.34	83.8 82.9 81.7 81.1 81.0	1,353 1,318 1,330 1,338 1,332
NW19-M Duplicate	GW-091217-PG-14 GW-091217-PG-15	BF	09/12/17 09/12/17	180	160	7.30 7.34 7.33 7.33 7.36	84.6 82.4 82.3 81.3 81.5	1,424 1,425 1,422 1,422 1,426
NW19-D	GW-092017-PG-36	BF	09/20/17	215	225	7.70 7.53 7.47 7.40 7.45	78.3 78.7 78.5 78.8 78.3	1,150 1,182 1,186 1,184 1,185
NW21-S Rinse Blank	GW-091317-PG-19 GW-091317-PG-18	SRG	09/13/17 09/13/17	103	20	7.59 7.45 7.53 7.00 6.99	99.3 102.2 98.4 92.7 85.3	1,689 1,694 1,694 2,221 2,232
NW22-D	GW-091917-PG-30	BF	09/19/17	195	185	7.52 7.50 7.48 7.46 7.52	76.4 76.5 76.6 76.6 76.5	1,334 1,364 1,385 1,381 1,375
NW22-S	GW-092017-PG-37	SRG	09/20/17	127	60	7.10 7.20 7.30 7.26 7.29	84.6 81.5 80.3 80.7 79.8	1,744 1,766 1,769 1,765 1,790

Table 3.5

Summary of Monitor Well Development Area - September and October 2017
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

Well ID	Sample ID	Hydrogeologic Unit Sampled	Date Purged/ Sampled	Pump Inlet Depth (ft below TOC)	Total Purged Volume (Gallons)	pH (s.u.)	Temperature	Conductivity (µs/cm)
NW23-D	GW-091817-PG-29	BF	09/18/17	185	225	7.38	77.8	1,503
Field Blank	GW-091817-PG-28		09/18/17			7.19	78.8	1,510
						7.32	78.1	1,510
						7.28	78.8	1,536
						7.30	78.8	1,510
NW23-S	GW-091417-PG-22	SRG	09/14/17	127	60	7.02	83.9	15
						6.92	83.1	1,511
						6.97	82.8	1,505
						6.97	82.1	1,501
						6.98	81.5	1,511
NW24-D	GW-092217-PG-46	BF	09/22/17	152	150	7.40	76.2	1,673
Rinse Blank	GW-092217-PG-45		09/22/17			7.13	76.5	1,693
						7.20	76.3	1,706
						7.23	76.2	1,698
						7.20	75.9	1,705
NW24-S	GW-092117-PG-42	SRG	09/21/17	94	50	7.45	81.6	1,860
	GW-092117-PG-43		09/21/17			7.40	80.9	1,815
						7.35	79.9	1,825
						7.44	79.9	1,800
						7.40	79.8	1,806
PZ01-B	GW-092817-PG-61	BF	09/28/17	123	30	7.23	81.7	1,881
						7.22	80.2	1,886
						7.21	79.5	1,887
						7.27	79.1	1,890
						7.24	79.2	1,887

Notes:

ft - feet

TOC - top of casing

s.u. - standard unit

°F - degrees Fahrenheit

μs/cm - microsiemens per centimeter

BF - Basin Fill

SRG - Salt River Gravels

MS/MSD - Matrix Spike/Matrix Spike Duplicate

"-" - Not measured

Table 3.6

Vertical and Horizontal Hydraulic Gradients for 2001, 2006, 2016, and 2017
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

		Monitoring Date	9/5/20	001	9/5/20	06	9/1/20	16	3/1/2017-3	8/9/2017	5/19/2017-5	/23/2017	9/4/2017-10	/26/2017
Well ID	Hydro- stratigraphic Unit	Reference Elevation (ft. AMSL)	Groundwater Elevation (ft. AMSL)	Vertical Gradient (ft/ft)										
ASE76-A	SRG	1,105.42	-	-	1,015.48	NA	1,001.11	NA	1,001.07	NA	-	-	1,002.88	NA
ASE76-B	BF	1,105.34	-	-	1,015.22	-2.6E-03	1,000.85	-2.6E-03	1,000.79	-2.8E-03	-	-	1,002.64	-2.4E-03
ASE77-A	SRG	1,101.86	-	-	1,011.35	NA	998.88	NA	999.84	NA	-	-	999.95	NA
ASE77-B	BF	1,101.76	-	-	1,010.64	-6.2E-03	998.03	-7.4E-03	998.94	-9.0E-03	-	-	999.12	-8.3E-03
EW13-118	SRG	1,092.71	1,015.81	NA	1,002.81	NA	990.33	NA	-	-	990.61	NA	990.95	NA
EW13-168	SRG	1,092.71	1,015.74	-1.4E-03	-	-	990.43	2.0E-03	-	-	990.61	0.0E+00	990.87	-1.6E-03
EW13-228	BF	1,092.71	1,016.90	1.9E-02	1,005.15	NA	992.25	3.0E-02	-	-	992.84	3.7E-02	992.83	3.3E-02
EW13-268	BF	1,092.71	1,016.95	1.3E-03	1,005.79	1.6E-02	992.95	1.8E-02	-	-	993.77	2.3E-02	993.50	1.7E-02
EW13-300	BF	1,092.71	1,017.12	5.3E-03	-	-	-	-	-	-	993.95	4.5E-03	-	-
EW22-S	SRG	1,095.72	1,013.88	NA	1,000.98	NA	989.71	NA	989.47	NA	990.22	NA	989.82	NA
EW22-D	BF	1,095.75	1,017.57	1.2E-02	1,008.38	2.3E-02	996.51	2.1E-02	998.90	9.4E-02	998.85	8.6E-02	996.94	7.1E-02
NW04-S	SRG	1,099.96	-	-	1,004.71	NA	992.91	NA	994.11	NA	993.26	NA	992.96	NA
NW04-D	BF	1,099.92	-	-	1,004.92	2.9E-03	993.38	6.4E-03	993.13	-9.8E-03	992.93	-3.3E-03	992.63	-3.3E-03
NW06-S	SRG	1,096.82	-	-	1,005.02	NA	991.29	NA	992.14	NA	992.29	NA	991.94	NA
NW06-D	BF	1,096.92	-	-	1,005.20	2.5E-03	992.34	1.5E-02	991.88	-2.6E-03	991.93	-3.6E-03	991.90	-4.0E-04
NW07-S	SRG	1,094.19	-	-	1,004.02	NA	991.17	NA	991.07	NA	992.27	NA	991.87	NA
NW07-M	SRG	1,093.94	-	-	1,003.97	-6.2E-04	991.02	-2.1E-03	990.29	-1.1E-02	991.59	-9.7E-03	991.48	-5.6E-03
NW07-D	BF	1,094.21	-	-	1,004.44	1.4E-02	992.49	4.2E-02	991.98	4.8E-02	992.78	3.4E-02	991.88	1.1E-02
NW08-S	SRG	1,098.45	-	-	1,006.35	NA	993.78	NA	996.54	NA	994.29	NA	994.15	NA
NW08-M	BF	1,098.65	-	-	1,006.23	-2.0E-03	993.23	-1.2E-02	995.15	-2.0E-02	995.55	1.8E-02	993.58	-8.1E-03
NW08-D	BF	1,098.72	-	-	1,007.92	3.5E-02	996.33	6.3E-02	998.13	8.5E-02	997.98	6.9E-02	995.83	6.4E-02
EW06	SRG	1,097.75	1,019.41	-	1,006.30	NA	992.60	NA	993.05	NA	993.95	NA	993.55	NA
NW11-M	SRG	1,097.59	-	-	1,006.15	-1.1E+02	993.01	5.0E-03	993.24	2.7E-03	994.24	4.1E-03	993.89	4.9E-03
NW11-D	BF	1,097.69	-	-	1,006.00	-4.1E-03	992.78	-6.2E-03	993.34	2.9E-03	994.19	-1.4E-03	993.79	-2.9E-03
NW09-M	SRG	1,099.58	-	-	1,006.87	NA	993.00	NA	993.07	NA	994.67	NA	994.27	NA
NW09-D	BF	1,099.30	_	-	1,006.15	-1.8E-02	992.90	-2.5E-03	992.93	-2.0E-03	994.58	-1.3E-03	994.07	-2.9E-03
NW09-D2	BF	1,099.42	-	-	1,006.00	-5.0E-03	993.32	1.4E-02	992.70	-6.6E-03	994.35	-6.6E-03	993.95	-3.4E-03
NW13-M	SRG	1,096.67	-	-	1,004.99	NA	991.52	NA	991.65	NA	993.30	NA	992.72	NA
NW13-D	BF	1,096.61	-	-	1,005.06	1.7E-03	991.72	5.0E-03	991.66	1.0E-04	993.31	1.0E-04	992.75	3.0E-04
NW14-M	SRG	1,096.11	-	-	1,005.23	NA	991.12	NA	992.09	NA	993.36	NA	992.91	NA
NW14-D	BF	1,096.12	-	-	1,005.29	1.5E-03	992.03	2.3E-02	992.14	5.0E-04	993.39	3.0E-04	992.96	5.0E-04
NW16-M	SRG	1,097.92	-	-	-	-	992.62	NA	993.41	NA	993.67	NA	993.32	NA
NW16-D	BF	1,097.96	-	-	-	-	993.23	9.4E-03	994.91	2.3E-02	994.46	1.2E-02	994.11	1.2E-02

Table 3.6

Vertical and Horizontal Hydraulic Gradients for 2001, 2006, 2016, and 2017
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

		Monitoring Date	9/5/20	01	9/5/20	06	9/1/20)16	3/1/2017-3	3/9/2017	5/19/2017-5	/23/2017	9/4/2017-10	/26/2017
Well ID	Hydro- stratigraphic Unit	Reference Elevation (ft. AMSL)	Groundwater Elevation (ft. AMSL)	Vertical Gradient (ft/ft)										
NW18-S NW18-M	SRG Colluvium	1,094.78 1,094.92	-	-	-	-	991.43 991.58	NA 2.1E-03	991.88 991.92	NA 5.7E-04	992.23 992.32	NA 1.3E-03	991.88 991.92	NA 5.7E-04
NW19-M NW19-D	SRG BF	1,100.50 1,100.69	-	-	-	-	995.40 995.38	NA -5.7E-04	995.34 995.28	NA -6.0E-04	997.09 997.05	NA -4.0E-04	996.74 996.59	NA -1.5E-03
NW22-S NW22-D	SRG BF	1,099.36 1,099.67	-	-	-	-	996.76 996.07	NA -1.1E-02	999.37 999.17	NA -2.0E-03	997.26 996.61	NA -6.5E-03	997.27 996.55	NA -7.2E-03
NW23-S NW23-D	SRG BF	1,101.26 1,101.13	-	-	-	-	998.38 997.25	NA -1.3E-02	998.69 997.71	NA -9.8E-03	999.85 998.81	NA -1.0E-02	999.63 998.51	NA -1.1E-02
NW24-S NW24-D	SRG BF	1,116.54 1,116.59	-	-	-	-	1,036.64 1,036.74	NA 1.7E-03	1,038.18 1,038.24	NA 6.0E-04	1,038.09 1,038.14	NA 5.0E-04	1,038.24 1,038.28	NA 4.0E-04
OU312-M OU312-D	SRG BF	1,090.79 1,090.77	-	-	1.0E+03 1,005.00	NA 4.3E-02	988.57 992.52	NA 4.0E-02	988.28 994.52	NA 6.2E-02	989.59 994.67	NA 5.1E-02	989.00 993.26	NA 4.3E-02
OU313-M OU313-D	SRG BF	1,095.75 1,095.71	-	-	1,001.03 1,003.36	NA 3.3E-02	989.42 991.90	NA 3.5E-02	989.25 992.60	NA 3.4E-02	990.05 993.01	NA 3.0E-02	989.60 992.04	NA 2.4E-02
OU314-M OU314-D	SRG BF	1,099.05 1,099.14	-	-	1,003.72 1,012.48	NA 1.2E-01	993.15 1,001.16	NA 1.1E-01	993.40 1,003.84	NA 1.0E-01	993.25 1,002.69	NA 9.4E-02	993.10 1,001.83	NA 8.7E-02
PZ01-S PZ01-D	SRG BR	1,102.69 1,102.69	1,020.35 1,020.39	NA 3.4E-04	1,003.40 1,003.45	NA 4.2E-04	993.74 993.70	NA -3.4E-04	998.07 998.04	NA -3.0E-04	993.89 993.86	NA -3.0E-04	993.92 993.89	NA -3.0E-04
PZ02-S PZ02-D	SRG BR	1,107.95 1,107.95	1,020.15 1,020.13	NA -1.6E-04	1,003.31 1,003.35	NA 3.2E-04	993.65 993.68	NA 2.4E-04	997.88 997.90	NA 2.0E-04	993.67 993.70	NA 3.0E-04	993.68 993.70	NA 2.0E-04

Notes:

SRG - Salt River Gravels BF - Basin Fill Deposits

BR - Bedrock

A negative number indicates a Downward Gradient

NA - Not Applicable

ft. AMSL - feet Above Mean Sea Level

ft/ft - feet per foot "-" - Not Measured

	Calculated			
Year	Horizontal	Wells	Used in Calcu	ılations
2001	2.2 x 10 ⁻³ SW	EW22-S	EW21	EW19-S
	4.9 x 10 ⁻³ SW	NW01	CRA01	EW07
2006	3.3 x 10 ⁻³ NE	DM515	NW08-S	EW06
	1.9 x 10 ⁻³ SW	EW22-S	EW21	EW19-S
	7.4 x 10 ⁻³ SW	NW01	CRA01	EW07
2016	2.4 x 10 ⁻³ SW	ASE86-A	NW23-S	NW08-S
	1.9 x 10 ⁻³ SW	EW22-S	OU317-S	OU312-M
	1.2 x 10 ⁻² SW	NW01	CRA01	EW07
2017	3.3 x 10 ⁻³ W-	ASE86-A	NW23-S	NW08-S
	1.8 x 10 ⁻³ SW	EW22-S	OU317-S	OU312-M
	7.6 x 10 ⁻³ SW	NW01	CRA01	EW07

Table 3.7

VOC Data for Salt River Gravel Wells - September 2001, 2006, 2016, and 2017
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

	July - September 2001 (Baseline)*		•		Septen	nber 2006			Septembe	er 2016			Septem	ber 2017	Change in TCE					
		TCE	1,1-DCA	1,1-DCE	1,2-DCE	TCE	1,1-DCA	1,1-DCE	1,2-DCE	TCE	1,1-DCA	1,1-DCE	1,2-DCE	TCE	1,1-DCA	1,1-DCE	1,2-DCE	2001-2017	2006-2017	2016-2017
Well ID		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
SRG Wells																				
AS02	(3)	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_
ASE19-A	(3)	ND(2.0)	38	ND(5.0)	ND(2.0)	-	-	-	-	_	_	_	_	_	_	_	_	_	_	_
ASE20-A	(3)	-	-	-	-	ND(2.0)	14	ND(5.0)	ND(2.0)	-	-	-	_	_	_	-	-	-	-	_
ASE22-A	(3)	51	8.2	10	21	53	9.3	7.8	13	_	-	_	-	-	-	-	_	-	-	_
ASE22-AR	(3)	-	-	-	-		-	-	-	1.7	ND(0.5)	ND(0.5)	ND(0.5)	3.3	0.6	ND(0.5)	ND(0.5)	-	-	1.6
ASE26-A	(3)	ND(2.0)	3.2	7.5	ND(2.0)	2.6	4.0	8.8	ND(2.0)	-	-	-	-	-	-	-	-	-	-	-
ASE27-A	(3)	19	6.2	ND(5.0)	11	7.5	5.1	ND(5.0)	3.6	-	-	-	_	-	-	-	-	-	-	-
ASE28-A	(3)	ND(2.0)	5.1	6.6	ND(2.0)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ASE30-A	(3)	10	10	9.2	4.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ASE31-A	(3)	69	ND(2.0)	ND(5.0)	19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ASE32-A	(3)	34	11	0.8	14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ASE33-A	(3)	54	8.8	10	22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ASE34-A	(3)	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	-	-	-	-	-	-	-	-	-	-	-
ASE34-B	(3)	-	-	-	-	2.2	ND(2.0)	ND(5.0)	ND(2.0)	-	-	-	-	-	-	-	-	-	-	-
ASE35-A	(3)	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	-	-	-	-	-	-	-	-	-	-	-
ASE36-A	(3)	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)				0) ND(2.0)/ND(2.0)	-	-	-	-	-	-	-	-	-	-	-
ASE41-A	(3)	-	-	-	-	ND(2.0)	37	ND(5.0)	9.3	-	-	-	-	-	-	-	-	-	-	-
ASE46-A	(3)	-	-	-	-	2.0	30	ND(5.0)	ND(2.0)	-	-	-	-	-	-	-	-	-	-	-
ASE51-A	(3)	-	-	-	-	7.9	13	ND(5.0)	ND(2.0)	-	-	-	-	-	-	-	-	-	-	-
ASE52-A	(3)	-	-	-	-	23 /22	9.2 J/6.4 J		0) ND(2.0)/ND(2.0)	-	-	-	-	ND(0.5)UJ	ND(0.5)UJ	ND(0.5)UJ	ND(0.5)UJ	-	-22.5	-
ASE53-A	(3)	-	-	-	-	14	ND(2.0)	ND(5.0)	ND(2.0)	-	-	-	-	-	-	-	-	-	-	-
ASE54-A	(3)	-	-	-	-	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	-	-	-	-	-	-
ASE55-A	(3)	-	-	-	-	ND(20)	52	ND(50)	ND(2.0)	-	-	-	-	-	-	-	-	-	-	-
ASE56-A	(3)	-	-	-	-	ND(2.0)	64 J	ND(5.0)	ND(2.0)	-	-	-	-	-	-	-	-	-	-	-
ASE57-A	(3)	-	-	-	-	ND(20)	23	ND(50)	ND(20)	- ND(0 E)/ND(0 E)	- - ND(0 E)/ND(0 E) N	- 	- E) ND(0 E)/ND(0 E)	- ND(0.5)	- ND(0.5)	- ND(0.5)	- ND(0.5)	-	- ND	- ND
ASE58-A ASE59-A	(3)	-	-	-	-	ND(2.0)	12	ND(5.0)	ND(2.0)	- -	ND(0.5)/ND(0.5) N	ND(0.5)/ND(0.5		ND(0.5)	ND(0.5)			-	ND	ND
ASE60-A	(3)	-	-	-	-	3.2 /3.2 40	41 /39 ND(2.0)	ND(5.0)/ND(5.0)	0) ND(2.0)/ND(2.0) ND(2.0)	- ND(0.5)	- ND(0.5)	0.7 J	- ND(0.5)	- ND(0.5)	- ND(0.5)	- ND(0.5)	- ND(0.5)	-	- -39.5	NID.
ASE61-A	(3)	-	-	-	-	2.6	ND(2.0) ND(2.0)	ND(5.0) ND(5.0)	ND(2.0)		ND(0.5) ND(0.5)/ND(0.5)	1.2 J /1.3 J		ND(0.5)	ND(0.5)	0.6	ND(0.5)	-	-39.5 -2.1	ND ND
ASE62-A	(3)	_	_	_	_	ND(2.0)	8.4	ND(5.0)	ND(2.0)	0.6	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	_	ND	-0.1
ASE-63A	(3)	_	_	_	_	-	-	ND(3.0)	-	-	-	- -	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	_	ND	ND
ASE64-A	(3)	_	_	_	_	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	_	_	_	_	-	-	-	-	_	-	-
ASE65-A	(3)	_	_	_	_	10	ND(2.0)	ND(5.0)	3.5	4.9	ND(0.5)	ND(0.5)	1.2	2.1	ND(0.5)	ND(0.5)	0.7	_	-7.9	-2.8
ASE66-A	(3)	-	_	-	_	ND(2.0)	4.6	ND(5.0)	ND(2.0)	-	-	-	-		-	-	-	-	-	-
ASE-68A	(3)	-	-	_	-	-	-	-	-	-	-	-	-	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	-	_
ASE69-A	(3)	-	-	_	-	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	ND	ND
ASE70-A	(3)	-	-	-	-	27	ND(2.0)	ND(5.0)	12	11	ND(0.5)	ND(0.5)	0.8	8	ND(0.5)	0.6	1	-	-19	-3
ASE71-A	(3)	-	-	-	-	67	10	ND(5.0)	17	-	-	- ′	-	-	-	-	-	-	-	-
ASE72-A	(3)	-	-	-	-	60 /58	6.8 /6.7	7.0 /6.8	14/14	-	-	-	-	-	-	-	-	-	-	-
ASE73-A	(3)	-	-	-	-	15	5.2	ND(5.0)	4.4	36	2.9	4.9	2.8	26 J	1.8 J	3.1 J	1.8 J	-	11	-10
ASE75-A	(3)	-	-	-	-	ND(2.0)	2	ND(5.0)	ND(2.0)	0.7	0.5	ND(0.5)	ND(0.5)	0.6 J	ND(0.5)UJ	ND(0.5)UJ	ND(0.5)UJ	-	-1.4	-0.1
ASE76-A	(3)	-	-	-	-	3.2	3.2	ND(5.0)	ND(2.0)	2.7	1.2	1.6	0.7	2.9 /3	1 /1	1.3 /1.4	0.7 /0.7	-	-0.2	0.3
ASE77-A	(3)	-	-	-	-	32	8.1	7.4	12	58	1.5	3.7	17	53	1.6	3.8	14	-	21	-5
ASE83-A	(3)	-	-	-	-	6.9	3.6	ND(5.0)	2.3	4.5	ND(0.5)	ND(0.5)	ND(0.5)	2	ND(0.5)	ND(0.5)	ND(0.5)	-	-4.9	-2.5
ASE84-A	(3)	-	-	-	-	7.1	2	ND(5.0)	2.3	77	3.2	5.9	3.1	26	1.1	2.5	1.6	-	18.9	-51
ASE85-A	(3)	-	-	-	-	42	5.8	ND(5.0)	11	56	2.1	4.4	8.4	36 J	1.6 J	3.1 J	4.7 J	-	-6	-20
ASE86-A	(3)	-	-	-	-	84	6.1	8.7	25	89	ND(0.5)	4.6	25	68	ND(0.5)	3.9	18	-	-16	-21
ASE87-A	(3)	-	-	-	-	6.5/5.6	5.0/3.7		0) ND(2.0)/ND(2.0)	12	0.7	1.5	0.8	5.1	ND(0.5)	0.6	ND(0.5)	-	-1.4	-6.9
ASE89-A	(0)	-	-	-	-	ND(2.0)	3.5	ND(5.0)	ND(2.0)	ND(1.7)	ND(1.7)	ND(1.7)	ND(1.7)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	ND	ND

Table 3.7

VOC Data for Salt River Gravel Wells - September 2001, 2006, 2016, and 2017
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

			July - September	2001 (Baseline)	*		Septen	nber 2006			Septer	mber 2016			Septem	nber 2017			Change in T	CE
•		TCE	1,1-DCA	1,1-DCE	1,2-DCE	TCE	1,1-DCA	1,1-DCE	1,2-DCE	TCE	1,1-DCA	1,1-DCE	1,2-DCE	TCE	1,1-DCA	1,1-DCE	1,2-DCE	2001-2017	2006-2017	2016-2017
Well ID		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
SRG Wells (cont'	'd)																			
ASE90-A	u,	_	_	_	_	ND(2.0)	28 J	ND(5.0)	ND(2.0)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	_	ND	ND
ASE-91A (3)		_	_	_	_	ND(2.0)	-	-	-	14D(0.5)	-	TVD(0.5)	TVD(0.5)	140(0.5)	145(0.0)	140(0.0)	140(0.0)		ND	ND
ASE-92A (3)		_	_	_	_	_	-	-	-	<u>-</u>	-	_	_	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	_	ND	ND
ASE95-A (3)		_	_		_	ND(2.0)	5.2	ND(5.0)	ND(2.0)	ND(0.5)/ND(0.5)		ND(0.5)/ND(0.5	5) ND(0.5)/ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	_	ND	ND
ASE96-A (3)		_	_	_	_	ND(2.0)	11	ND(5.0)	ND(2.0)	ND(0.5)/ND(0.5)		0.6 / 0.6	ND(0.5)/ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	_	ND	ND
ASE97-A (3)		_	_		_	ND(2.0)	9.1 J	ND(5.0)	ND(2.0)	-	-	-	14D(0.5)/14D(0.5)	14D(0.5)	-	ND(0.5)	TVD(0.5)	_	-	IND
ASE98-A (3)		-	-	-	-	ND(2.0)/2.0	ND(2.0)/2.0	ND(5.0)/ND(5.0) N		ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	_	-	-	_	_	ND	ND
ASE99-A (3)		-	-	-	-	ND(2.0)/2.0 ND(2.0)	ND(2.0)/2.0	ND(5.0)	ND(2.0)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	-	-	-	-	ND	ND
ASE100-A (3)		-	-	-	-	ND(2.0) ND(2.0)	ND(2.0) ND(2.0)		ND(2.0) ND(2.0)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	- -	-	-	-	ND	ND
ASE101-A (3)		-	-	-	-	ND(2.0) ND(2.0)		ND(5.0)	ND(2.0) ND(2.0)	ND(0.5)	0.7		ND(0.5)	- ND(1)	- ND(1)	ND(1)	- ND(1)	-	ND	ND
ASE101-A ASE102-A (3)		-	-	-	-		2 ND(2.0)	ND(5.0)			0.7	0.6	ND(0.5)		` '	ND(1)	ND(1)	-	ND	ND
ASE102-A ASE103-A (3)		•	-	-	-	ND(2.0)		ND(5.0)	ND(2.0)	- ND(0.5)		ND(0.5)		-	-	-	-	-	ND -	- ND
ASE105-A (3)		•	-	-	-	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	ND(0.5)	ND(0.5)	, ,	ND(0.5)	-	-	-	-	-	ND	
(6)		•	-	-	-	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	-	-	-	-	ND	ND
ASE106-A (3)		-	-	-	-	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	- ND(0.5)	- ND(0.5)	ND(0.5)	- ND(0.5)	-	ND	ND
ASE IUT-A		-	-	-	-	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	` '	-	ND	ND
ASE108-A (3)		-	-	-	-	2.4	25 ND(2.0)	ND(5.0)	ND(2.0)			5) ND(0.5)/ND(0.5		ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	-1.9	ND
ASE109-A (3)		-	-	-	-	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	- ND(0.5)	- ND(0.5)	- ND(0.5)	- ND(0.5)	-	-	-	-	-	- ND	-
ASE110-A (3)		-	-	-	-	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	-	-	-	-	ND	-
ASE112-A (3)		-	-	-	-	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	-	-	-	-	-	-	-	-	-	-	-
ASE116-A (3)		-	-	-	-	7.9 /8.5	ND(2.0)/2.0	ND(5.0)/ND(5.0)	3.3/3.5	ND(0.5)	ND(0.5)	0.6	ND(0.5)	-	-	-	-	-	-	-
ASETTO-A		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ASE 124-A		-	-	-	-	ND(2.0)/2.0	2.6 /2.6	ND(5.0)/ND(5.0) N	. , , ,	ND(0.5)	0.6	ND(0.5)	ND(0.5)	-	-	-	-	-	-	-
ASE 125-A		-	-	-	-	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	-	-	-	-	-	-
ASE126-A		-	-	-	-	ND(2.0)	15 J	ND(5.0)	ND(2.0)	1.4 / 1.4		5) ND(0.5)/ND(0.5		0.8	ND(0.5)	ND(0.5)	ND(0.5)	-	-1.2	-0.6
ASE 120-A		-	-	-	-	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)UJ	ND(0.5)UJ	ND(0.5)UJ	ND(0.5)UJ	-	ND	ND
ASE 129-A		-	-	-	-	-	-	-	-	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	- -	-	-	-	-	-	-
ASE-130A		-	-	-	-	-	-	-	-	-	-	-	-	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	-	-
ASE-131A		-	-	-	-	-	-	-	-	-	-	-	-	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	-	-
BC03 (3)		52	ND(2.0)	7.7	35	15	ND(2.0)	ND(5.0)	5	6.7	ND(0.5)	ND(0.5)	1.3	5	ND(0.5)	ND(0.5)	0.9	-47	-10	-1.7
DC00-D		ND(2.0)	37	ND(5.0)	ND(2.0)	ND(2.0)	24	ND(5.0)	ND(2.0)	-	-	-	-	-	-	-	-	-	-	-
BC09 (3)		80	10	ND(5.0)	14	81	9.8	ND(5.0)	16	22	5	ND(0.5)	7.5	-	-	-	-	-	-	-
BC10-A (3)	11	ND(2.0)	2.3	ND(5.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	-	-	-	-	-	-	-	-	-	-	-
BC12 (3)		-	-	-	-	-	-	-	-	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	-	ND
BC16		91	ND(2.0)	18	73	35	ND(2.0)	ND(5.0)	15	17.4	ND(1.0)	ND(1.0)	1.3	13.3	ND(1.0)	ND(1.0)	ND(1.0)	-77.7	-21.7	-4.1
BC18 (3)		5.8	8.6	ND(5.0)	ND(2.0)	-	-	-	-	2.5	ND(0.5)	ND(0.5)	0.5	2.3	ND(0.5)	ND(0.5)	ND(0.5)	-3.5	-	-0.2
BR05 (1)		-	-	-	-	35	ND(0.5)	2.4	12.57	-	-	-	-	-	-	-	-	-	-	-
CRA01	Ν	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	2.0	ND(1.0)	ND(1.0)	ND(1.0)	3.4	ND(1.0)	ND(1.0)	ND(1.0)	2.4	2.4	1.4
DM507-084 (1)		170	0.59	24	130	57	ND(0.5)	6.7	25	-	-	-	-	-	-	-	-	-	-	-
DM510-070 (1)		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DM510-110 (1)		360	ND(0.50)	19	180	260	ND(0.5)	14	83	69.9	ND(0.5)	2	19.4	63.7	ND(0.5)	1.5	16.6	-296.3	-196.3	-6.2
DM511-065 ⁽¹⁾		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DM512-060 ⁽¹⁾		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DM512-090 (1)		-	-	-	-	0.58 J	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	4.7	ND(0.5)	ND(0.5)	ND(0.5)	-	4.12	4.2
DM513-070 (1)		6.3	ND(0.50)	ND(0.50)	14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DM514-065 (1)		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DM515-065 (1)		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DM515-115 (1)		23	ND(0.50)	6.9	190	4.5	0.59	1.9	40	-	-	-	-	-	-	-	-	-	-	-
DM516-065 (1)		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DM516-150 (1)		150	35	42	211.4	16	1.1	1.6	23	23	2.4	2.5	37.4	82.3	0.93	3.1	21.2	-67.7	66.3	59.3

Table 3.7

VOC Data for Salt River Gravel Wells - September 2001, 2006, 2016, and 2017
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

		July - September	r 2001 (Baseline))*		Septembe	r 2006			Septem	ber 2016			Septembe	er 2017		(Change in T	CE
	TCE	1,1-DCA	1,1-DCE	1,2-DCE	TCE	1,1-DCA	1,1-DCE	1,2-DCE	TCE	1,1-DCA	1,1-DCE	1,2-DCE	TCE	1,1-DCA	1,1-DCE	1,2-DCE	2001-2017		
Well ID	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
SRG Wells (cont'd)																			
DM517-070 (1)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DM517-125 (1)	32	23	13	13	8.6	4.2	3.5	3.4	4.1	1.2	2	ND(0.5)	2.6	0.68	0.89	ND(0.5)	-29.4	-6	-1.5
DW05 (2)	-	-	-	-	1.1	ND(0.5)	0.78	ND(0.5)	-	-	_	-	-	-	-	-	-	-	-
EW06	44	55	38	7.3	4.9 J	4.4 J	4.8 J	1.2 J	2.0	ND(1.0)	ND(1.0)	ND(1.0)	2.6	ND(1.0)	ND(1.0)	ND(1.0)	-41.4	-2.3	0.6
EW07	13	ND(2.0)	ND(2.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	2.6 J	ND(1.0)	ND(1.0)	ND(1.0)	2.5	ND(1.0)	ND(1.0)	ND(1.0)	-10.5	1.5	-0.1
EW12-078 (2)	240	5.9	5.3	94	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EW12-093 (2)	340	4.7	11	110	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-
EW12-128 (2)	440	4.0	10	130	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-
EW13-118 (2)	6.0	7.1	9.4	ND(1.0)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	-	-	-	-	-	-	-	-	-	-
EW13-168 (2)	-	-	-	-	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	-	_	-	-	-	-	-	-	-	-
EW19-S (2)	290	11	11	85.1	68	11	9.8	19	-	-	_	-	-	-	-	-	-	-	-
EW20 (2)	-	-	-	-	75	1.3	ND(0.5)	17.5	-	-	_	-	-	-	-	-	-	-	-
EW21 (2)	36	ND(1.0)	ND(1.0)	5.5	5.1	ND(0.5)	ND(0.5)	0.57	-	-	_	-	-	-	-	-	-	-	-
EW22-S	190	ND(1.0)	ND(1.0)	39.2	37	1.5	1.7	8.3	5.7	ND(1.0)	ND(1.0)	ND(1.0)	3.8	ND(1.0)	ND(1.0)	ND(1.0)	-186.2	-33.2	-1.9
EW23 (4)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	-	-	-	-	-	-	-	-	-	-	-
FDMW07 (4)	330	ND(1.0)	14	11	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-
MW01(HERTZ) (4)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW05 (4)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
NW01	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	6.3	ND(1.0)	ND(1.0)	ND(1.0)	7.7	ND(1.0)	ND(1.0)	ND(1.0)	6.7	6.7	1.4
NW02	190	ND(2.0)	ND(2.0)	33	45	ND(1.0)	ND(1.0)	7.7	1.6	ND(1.0)	ND(1.0)	ND(1.0)	1.9 / 1.9	ND(1.0)/ND(1.0) N	ID(1.0)/ND(1.0)		-188.1	-43.1	0.3
NW03	470	2.7	8.7	150	51	14	16	16	15.0	ND(1.0)	1.6	3.6	60.6	ND(1.0)	2.9	12.8	-409.4	9.6	45.6
NW04-S	-	-	-	-	16	ND(1.0)	ND(1.0)	2.8	0.50	ND(1.0)	ND(1.0)	ND(1.0)	1.5	ND(1.0)	ND(1.0)	ND(1.0)	-	-14.5	1
NW05-S	-	-	-	-	33	2.4	1.9	9.4	2.5	ND(1.0)	ND(1.0)	ND(1.0)	2.4	ND(1.0)	ND(1.0)	2.1	-	-30.6	-0.1
NW06-S	_	_	-	-	19	12	13	6.4	17.7	2.0	2.6	4.1	29.7	1.7	2.3	6.8	-	10.7	12
NW07-M	-	-	-	-	15	4.5	11	4.6	0.65	0.59 J	0.68 J	0.42 J	2.6	ND(1.0)	2.3	ND(1.0)	-	-12.4	1.95
NW07-S	-	-	-	-	1.7	1.3	ND(1.0)	ND(1.0)	ND(0.50)	ND(1.0)	ND(1.0)	ND(1.0)	2.1	ND(1.0)	ND(1.0)	ND(1.0)	-	0.4	1.6
NW08-S	-	-	-	-	23	12	13	8.2	22.0	1.0	1.6	10.8	61.2	ND(1.0)	2.3	14.0	-	38.2	39.2
NW09-M	-	_	-	-	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	1.2 / 1.4) ND(1.0)/ND(1.0)	0.82	ND(1.0)	ND(1.0)	ND(1.0)	-	-0.18	-0.38
NW11-M	-	-	-	-	14	5.2	10	3.6	7.1	2.4	6.3	2.0	8.8	2.2	5.1	2.2	-	-5.2	1.7
NW13-M	-	-	-	-	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(0.50)	ND(1.0)	ND(1.0)	ND(1.0)	ND(0.50)	ND(1.0)	ND(1.0)	ND(1.0)	-	ND	ND
NW14-M	-	-	-	-	2.7/2.6	ND(1.0)/ND(1.0)	1.8 /1.8	ND(1.0)/ND(1.0)	2.0	ND(1.0)	2.6	ND(1.0)	2.7	ND(1.0)	2.4	ND(1.0)	-	0	0.7
NW16-M	-	-	-	-	-	-	-	-	102 J /101 J	14.7 J/13.9 J	33.3 J/30.9 J	17.8 J/16.5 J	97.9	12.2	29.3	18.1 ´	-	-	-4.1
NW18-S	-	-	-	-	-	-	-	-	14.7	2.5	3.4	3.7	33.3	1.6	2.5	6.9	-	-	18.6
NW19-M	-	-	-	-	-	-	-	-	4.5	2.1	6.6	1.4	5.9 / 5.9	1.8 /1.7	4.9 / 4.7	1.4 / 1.4	-	-	1.4
NW21-S	-	-	-	-	-	-	-	-	5.9	ND(1.0)	ND(1.0)	0.39 J	5.1	ND(1.0)	ND(1.0)	ND(1.0)	-	-	-0.8
NW22-S	-	-	-	-	-	-	-	-	38.4 J	ND(1.0)	1.6 J ´	6.4 J	37.7	ND(1.0)	1.2	4.9	-	-	-0.7
NW23-S	-	-	-	-	-	-	-	-	7.6	2.2	2.8	1.9	10.3	2.1	2.7	2.0	-	-	2.7
NW24-S	-	-	-	-	-	-	-	-	65.9	ND(1.0)	4.2 J	19.0 J	82.4 /82.8	ND(1.0)/ND(1.0)	3.1 /3.2	15.2 /15.9	-	-	16.5
NW25-S	-	-	-	-	-	-	-	-	7.4 / 7.6		ND(1.0)/ND(1.0)		13.0 / 13.1	ND(1.0)/ND(1.0) N			-	-	5.6
OU301-M (3)	-	-	-	-	7.0/6.9	ND(0.5)/ND(0.5) N	D(0.5)/ND(0.5	5) 0.99/0.94	1.6	ND(0.50)	ND(0.50)	ND(0.50)	-	-	-	-	-	-	-
OU302-M (3)	-	-	-	-	210	13	26	48	19 /19	1.4 / 1.3	1.7 / 1.8	3.3 / 3.3	-	-	-	-	-	-	_
OU304-S (3)	-	-	-	-	1	ND(0.5)	ND(0.5)	ND(0.5)	-	-	-	-	-	-	-	-	-	-	_
OU305-M (3)	-	-	-	-	-	-	- '	-	-	-	-	-	-	-	-	-	-	-	-
OU305-MR (3)	-	-	-	-	210 /200	3.1 /3.5	5.6 /5.1	40/40	17	0.73	1.3	3.1	-	-	-	-	-	-	-
OU305-S (3)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
OU305-SR (3)	-	-	-	-	100	1.4	1.9	19	4.4	ND(0.50)	ND(0.50)	0.82	-	-	-	-	-	-	-
OU306-M (3)	-	-	-	-	14	6.5	9.8	3.5	1.1	ND(0.50)	ND(0.50)	ND(0.50)	-	-	-	-	-	-	-
OU307-M2 (3)	-	-	-	-	2.3	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	-	-	-	-	-	-	-
OU307-S (3)	-	-	-	-	0.64	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	-	-	-	-	-	-	-
						V = -/	,	\ /	/	1 /	/	• • = = /							

Table 3.7

VOC Data for Salt River Gravel Wells - September 2001, 2006, 2016, and 2017
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

		July - Septembe	r 2001 (Baseline)	*		Septe	mber 2006			Septemi	ber 2016			Septem	ber 2017		(Change in T	CE
_	TCE	1,1-DCA	1,1-DCE	1,2-DCE	TCE	1,1-DCA	1,1-DCE	1,2-DCE	TCE	1,1-DCA	1,1-DCE	1,2-DCE	TCE	1,1-DCA	1,1-DCE	1,2-DCE		2006-2017	2016-2017
Well ID	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
SRG Wells (cont'd))																		
OU308-M2 (3)	-	-	-	-	42	ND(0.5)	ND(0.5)	2.8	5.7 / 5.4	ND(0.5)/ND(0.5)	ND(0.5)/ND(0.5)) ND(0.5)/ND(0.5)	-	-	-	-	-	-	-
OU308-S (3)	-	-	-	-	14	ND(0.5)	ND(0.5)	1.4	-	-	-	-	-	-	-	-	-	-	-
OU309-S (3)	-	-	-	-	1.2	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	-	-	-	-	-	-	-
OU310-M (3)	-	-	-	-	130	20 E	25	29	7.3	0.97	2.1	2.1	-	-	-	-	-	-	-
OU310-M2 (3)	-	-	-	-	180	24	38	37.72	17	1.7	3.9	3.1	-	-	-	-	-	-	-
OU310-SR (3)	-	-	-	-	46	9.7	1	-	4.3	0.60	0.67	1.0	-	-	-	-	-	-	-
OU311-M (3)	-	-	-	-	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	-	-	-	-	-	-	-
OU311-S (3)	-	-	-	-	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	-	-	-	-	-	-	-
OU312-M (3)	-	-	-	-	16	8	12	4.1	5.1	1.1	1.7	1.1	-	-	-	-	-	-	-
00313-W	-	-	-	-	73	ND(0.5)	ND(0.5)	5.6	12	ND(0.50)	ND(0.50)	1.0	-	-	-	-	-	-	-
00314-101	-	-	-	-	0.65	ND(0.5)	ND(0.5)	ND(0.5)	-	-	-	-	-	-	-	-	-	-	-
OU3 16-W	-	-	-	-	-	-	-	-	53	4.3	6.5	9.7	-	-	-	-	-	-	-
00310-3	-	-	-	-	-	-	-	-	21	1.8	1.9	4.2	-	-	-	-	-	-	-
OU317-S (3)	-	-	-	-	-	-	-	-	1.2	ND(0.50)	ND(0.50)	ND(0.50)	-	-	-	-	-	-	-
OO3 19-W	-	-	-	-	-	-	-	-	39 / 39	2.7 / 2.8	4.9 / 4.7	7.6 / 7.4	-	-	-	-	-	-	-
OU320-IVI	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
OU320-S (3)	-	-	-	-	ND(0.50)	- ND(1.0)	- ND(0.50)	- ND(0.5)	-	-	-	-	-	-	-	-	-	-	-
PHXA01 (4)	-	-	-	-	, ,	ND(1.0)	ND(0.50)	, ,	-	-	-	-	-	-	-	-	-	-	-
PHXA02 (4) PHXA04 (4)	-	-	-	-	ND(0.50)	ND(1.0) 2.4	ND(0.50)	ND(0.5) ND(0.5)	-	-	-	-	-	-	-	-	-	-	-
PHXA04 PHXA05 (4)	-	-	-	-	2.1 0.85	ND(1.0)	2.8 0.83	ND(0.5)	-	-	-	-	-	-	-	-	-	-	-
PHXA06 (4)	_	-	-	-	4.8	5.9	6.2	1.3	_	_	_	_		_	_	_	_	_	
PL101-A (3)	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(5.0)	2.5	_	_	_	_	_	_	_	_	_	_	_
PL102-A (3)	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	_	_	_	_	_	_	_	_	_	_	_
PL103-A (3)	75	ND(2.0)	11	53	40 J	ND(2.0)	ND(5.0)	12 J	_	_	_	_	_	_	_	_	_	_	_
PL104-A (3)	-	-	-	-	-	-	-	-	_	_	-	-	_	_	-	_	-	-	_
PL105-A (3)	ND(2.0)	130	ND(5.0)	ND(2.0)	ND(2.0)	61	ND(5.0)	ND(2.0)	_	-	-	-	-	-	-	-	-	-	-
PL201-A (3)	2.8	9.4	ND(5.0)	ND(2.0)	ND(2.0)/ND(2.0)	10 /10	ND(5.0)/ND(5.0)	, ,	_	-	-	-	-	-	-	-	-	-	_
PL202-C (3)	ND(2.0)	4.0	ND(5.0)	ND(2.0)	ND(2.0)	2.5	ND(5.0)	ND(2.0)	-	-	-	-	-	_	-	-	-	-	-
PL202-S (3)	5.3	6.7	ND(5.0)	2.0	-	-	- '	-	-	-	-	-	-	-	-	-	-	-	-
PL2101 (3)	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	ND(2.0)	5	ND(5.0)	ND(2.0)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND	ND	ND
PL2102 (3)	2.6	ND(2.0)	ND(5.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-2.1	ND	ND
PL2102-A (3)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PZ01-A	230	ND(2.0)	51	190	70	ND(2.0)	10	46	-	-	-	-	-	-	-	-	-	-	-
PZ01-S	64	ND(2.0)	ND(2.0)	12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PZ02-S	31	ND(2.0)	ND(2.0)	7.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SCMW-1D (3)	-	-	-	-	15	9.6	11	3.7	5.1	1.2	1.0	1.2	-	-	-	-	-	-	-
TEW01	140	ND(1.0)	1.1	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TT02 (2)	2.4	-	3.4	-	0.43 J/0.48 J N	1D(0.5)/ND(0.	.5) ND(0.5)/ND(0.5)	ND(0.5)/ND(0.5)	-	-	-	-	-	-	-	-	-	-	-
TT05 (2)	ND(1.0)	-	-	150	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SRG/BF Wells																			
ASE37-A (3)	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	3.8	ND(2.0)	ND(5.0)	3.1	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	_	_	-	_	-	-	_
ASE38-A (3)	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	4.8	ND(2.0)	ND(5.0)	2	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	-	-	-	_	-	-
ASE39-A	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	4.5	ND(2.0)	ND(5.0)	8.1	-	-	-	-	-	_	-	-	_	-	-
ASE63-A	-	-	-	-	4.6	ND(2.0)	ND(5.0)	9.4	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	_	-4.1	ND
ASE67-A	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ASE68-A (3)	-	-	-	-	5.6	18	ND(5.0)	17	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	-5.1	ND
ASE91-A (3)	-	-	-	-	ND(2.0)	95	ND(5.0)	ND(2.0)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	ND	ND
ASE92-A (3)	-	-	-	-	ND(2.0)	14	ND(5.0)	4.8	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	ND	ND
					• •					• •		•	•						

Table 3.7

VOC Data for Salt River Gravel Wells - September 2001, 2006, 2016, and 2017
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

		July - Septembe	r 2001 (Baseline))*		Septen	nber 2006		Septem	ber 2016			Septem	ber 2017		(Change in To	CE	
	TCE	1,1-DCA	1,1-DCE	1,2-DCE	TCE	1,1-DCA	1,1-DCE	1,2-DCE	TCE	1,1-DCA	1,1-DCE	1,2-DCE	TCE	1,1-DCA	1,1-DCE	1,2-DCE	2001-2017	2006-2017	2016-2017
Well ID	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
SRG/BF Wells (co	ont'd)																		
ASE111-A (3)	-	-	-	-	6.9 J	-	-	-	ND(0.5)	ND(0.5)	0.6	ND(0.5)	-	-	-	-	-	-	-
ASE113-A (3)	-	-	-	-	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	ND(0.5)	ND(0.5)	0.5	ND(0.5)	-	-	-	-	-	-	-
ASE114-A (3)	-	-	-	-	-	-	-	-	-	-	-	-	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	-	-
ASE115-A (3)	-	-	-	-	-	-	-	-	ND(0.5)	ND(0.5)	0.8	ND(0.5)	-	-	-	-	-	-	-
ASE120 (3)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ASE122-A (3)	-	-	-	-	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	-	-	-	-	-	-
ASE123-A (3)	-	-	-	-	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	-	-	-	-	-	-
ASE130-A	-	-	-	-	-	-	-	-	ND(0.5)UJ	ND(0.5)UJ	ND(0.5)UJ	ND(0.5)UJ	ND(0.5)/ND(0.5) ND(0.5)/ND(0.5)	ND(0.5)/ND(0.5)	ND(0.5)/ND(0.5)	-	-	ND
BC07-A	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	-	-	<u>-</u>	-	-	-	-	-	-	-	- -
EW03	630	ND(5.0)	35	225.5	320	ND(0.5)	25	121.1	83.7	ND(1.0)	9.7 J	45.1 J	116	ND(1.0)	8.1	37.9	-514	-204	32.3
EWM	320	ND(1.0)	5.1	72	170	3.8	9.2	37	39.6	ND(1.0)	1.6	8.3	38.7	ND(1.0)	1.3	7.2	-281.3	-131.3	-0.9
EWN	98	ND(1.0)	ND(1.0)	14	14	ND(1.0)	ND(1.0)	1.5	6.9	ND(1.0)	ND(1.0)	ND(1.0)	7.7	ND(1.0)	ND(1.0)	ND(1.0)	-90.3	-6.3	8.0
EWSPZ1	-	-	-	-	-	-	-	-	- 34 / 34	-	-	- F F / C 1	-	-	-	-	-	-	-
OU305-M2 (3)	-	-	-	-	210	4.6	7.2	32.92		1.4 / 1.6	2.0 / 2.6	5.5 / 6.1	-	-	-	-	-	-	-
OU309-M2 (3) OU311-M2 (3)	-	-	-	-	4 /4.3	0.5) ND(0.5)/ND(0.5) 5.ND(0.5)/ND(0.5) ND(0.5)/ND(0.5)	0.72/0.76 0.51/0.47 J	ND(0.50) ND(0.50)	ND(0.50) ND(0.50)	ND(0.50) ND(0.50)	ND(0.50) ND(0.50)	-	-	-	-	-	-	-
	-	-	-	-	ND(0.5)/ND(0	.5) אטאיי(ט.טאיו (ט.ט) אט(ט.ס)/אט(ט.ס)	0.51/0.47 J	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	-	-	-	-	-	-	-
SRG/BR Wells																			
ASE127-A (3)	-	-	-	-	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	-	-	-	-	-	-
PHXA03 (4)	-	-	-	-	1.2	ND(1.0)	1.1	ND(0.5)	-	-	-	-	-	-	-	-	-	-	-
SRG/CV Wells																			
ASE81-A (3)	-	-	-	-	12	ND(2.0)	ND(5.0)	3.9	2	ND(0.5)	ND(0.5)	ND(0.5)	2.4	ND(0.5)	ND(0.5)	ND(0.5)	-	-9.6	0.4
BC06 (3)	6.0	2.1	ND(5.0)	ND(2.0)	5.0	3.8	ND(5.0)	ND(2.0)	0.7	ND(0.5)	ND(0.5)	ND(0.5)	0.7	ND(0.5)	ND(0.5)	ND(0.5)	-5.3	-4.3	0
SRG/BF/BR Wells	S																		
DM518-OB1 (4)	180	3.5	13	91	260	1.4	14	77	-	-	-	-	-	-	-	-	-	-	-
EWS	320	12	16	83	33	12	14	9.3	37.2	2.3	4.3	8.9	45.4	1.5	3.3	9.8	-274.6	12.4	8.2

(1) Sampled by Clear Creek Associates

Notes:

μg/L - micrograms per liter VOC - Volatile Organic Compound

TCE - Trichloroethylene SRG - Salt River Gravel

1,1-DCA - 1,1 DichloroethaneBF - Basin Fill(2) Sampled by ERM1,1-DCE - 1,1 DichloroetheneBR - Bedrock(3) Sampled by CH2M

1,2-DCE - 1,2 Dichloroethene CV - Colluvium (4)Well historically sampled, no longer part of the OU2 GES Monitor Well Network

Results are estimated although the data are considered usable and may be used as appropriate to meet project objectives. Results are qualitatively acceptable and quantitatively uncertain.

ND - Not detecte

ND(x.x)- Not detected above the reported sample quantitation limit x.x. For VOC analytical data, there is not a quantitation limit due to varying limits in data used.

ND(0.5)/ND(0.5)- Second Result value is duplicate sample.

J - Analyte was analyzed for and was positively defined, but the reported numerical value may not be consistent with the amount actually present in the environmental sample.

Table 3.8

VOC Data for Basin Fill Wells - September 2001, 2006, 2016, and 2017

52nd Street Superfund Site, OU2 Area

Phoenix, Arizona

		uly - Septembe	r 2001 (Base	eline)*		September 2006				Septemb	per 2016			Septem	ber 2017		CI	nange in TC	<u>E</u>
Well ID	TCE (µg/L	,	1,1-DCE (μg/L)	1,2-DCE (μg/L)	TCE (µg/L)	1,1-DCA (μg/L)	1,1-DCE (μg/L)	1,2-DCE (μg/L)	TCE (µg/L)	1,1-DCA (μg/L)	1,1-DCE (µg/L)	1,2-DCE (μg/L)	TCE (µg/L)	1,1-DCA (μg/L)	1,1-DCE (µg/L)	1,2-DCE (μg/L)	2001-2017 (μg/L)	2006-2017 (μg/L)	2016-2017 (μg/L)
BF Wells																			
ASE40-B) ND(2.	0) 13	ND(5.0)	ND(2.0)	ND(2.0)	3	ND(5.0)	ND(2.0)	0.9	0.8	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND	ND	-0.4
ASE41-B (3) ND(2.	0) 13	ND(5.0)	ND(2.0)	4.6	13	ND(5.0)	2.8	ND(0.5)/ND(0.5)	ND	-4.1	ND							
ASE44-B (3) ND(2.	0) ND(2.0)	ND(5.0)	ND(2.0)	ND(2.0)	2.4	ND(5.0)	ND(2.0)	-	-	-	-	-	-	-	-	-	-	-
ASE45-B (3) ND(2.	0) 13	ND(5.0)	ND(2.0)	16	17	ND(5.0)	2.8	ND(0.5)UJ	ND(0.5)UJ	ND(0.5)UJ	ND(0.5)UJ	ND(0.5)/ND(0.5)	ND(0.5)/ND(0.5)	ND(0.5)/ND(0.5)	ND(0.5)/ND(0.5)	ND	-15.5	ND
ASE46-B (3) ND(2.	0) 5.8	ND(5.0)	ND(2.0)	ND(2.0)	4.7	ND(5.0)	2.4	1.5 J	1.8 J	ND(0.5)UJ	ND(0.5)UJ	1.3	0.9	ND(0.5)	ND(0.5)	-0.7	-0.7	-0.2
ASE48-B	140(2.	0) ND(2.0)	ND(5.0)	ND(2.0)	6.3	13	ND(5.0)	ND(2.0)	ND(0.5)	ND	-5.8	ND							
ASE49-B (3	.,5	0) 6.1	ND(5.0)	ND(2.0)	25	5.6	ND(5.0)	ND(2.0)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)/ND(0.5)	ND(0.5)/ND(0.5)	ND(0.5)/ND(0.5)	ND(0.5)/ND(0.5)	ND	-24.5	ND
ASE73-B (3	_	-	-	-	15	5	ND(5.0)	5.4	29 /28	2.3 /2.3	4.2 /4	2.4 /2.4	23 J	1.5 J	2.3 J	1.6 J	-	8	-6
ASE76-B (3	_	-	-	-	150	2.6	14	26	220	17	53	50	200 /200	20 /21	50 /54	50 /51	-	50	-20
ASE77-B (3		-	-	-	ND(2.0)/ND(2.0)	. , , ,	ND(2.0)/ND(2.0)	ND(2.0)/ND(2.0)	-	-	-	-	-	-	-	-	-	-	-
ASE78-B		-	-	-	48	13	30	15	37	12	21	11	25 J	7.8 J	14 J	7.6 J	-	-23	-12
ASE83-B	_	-	-	-	31	23	22	15	4.9	2.2	2.6	1.4	6.2	1.8	2.2	1.4	-	-24.8	1.3
ASEOS-D	_	-	-	-	130	12	18	27	66	5.7	9	11 ND(0.5)	60	4.4 ND(0.5)	7.1	10 ND(0.5)	-	-70	-6 0.0
ASEOO-D	_	- 0) ND(2.0)	- ND(5.0)	- ND(2.0)	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	2.1 ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	1.8 ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	- ND	-0.2	-0.3
BC01 (3 BC02	.,5		ND(5.0) ND(5.0)	ND(2.0) ND(2.0)	ND(2.0) 27	ND(2.0) ND(2.0)	ND(5.0) ND(5.0)	ND(2.0) ND(2.0)	ND(0.5) ND(0.5)	ND	ND -26.5	ND ND							
BC02	.,5	ND(2.0)	ND(5.0)	3.1	21	ND(2.0)	ND(5.0)	ND(2.0)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	2.2	ND(0.5)	ND(0.5)	ND(0.5)	-20.8	-18.8	1.7
BC08-A (3	20	ND(2.0)	ND(5.0)	ND(2.0)	4.3	2.2	9.5	ND(2.0)	3.3	ND(0.5)	ND(0.5)	ND(0.5)	0.7	ND(0.5)	ND(0.5)	ND(0.5)	-3	-3.6	-2.6
BC10-B (3		ND(2.0)	ND(5.0)	6.6	22	2.4	6.5	8.8	14	6	20	3.9	11 / 11	4.1 / 4.4	12 / 13	3 / 2.7	-8	-11	-3
BC10-B		23	15	11	32	7.4	8.2	12	19	4.1 J	5.3	4	20	3	5.2	3.7	-7	-12	1
BC13 (3			ND(5.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	-	-	-	· -	-	-	-	-	<u>.</u>	-	-
BC14 (3			ND(5.0)	ND(2.0)	ND(2.0)/ND(2.0)			ND(2.0)/ND(2.0)	-	-	-	-	-	-	-	-	-	_	-
BC15 (3		, , ,	ND(5.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)UJ	ND(0.5)UJ	ND(0.5)UJ	ND(0.5)UJ	ND	ND	ND
DM118 (1		-	ND(0.5)	ND(0.5)	2.4	ND(0.5)	ND(0.5)	ND(0.5)	-	-	-	-	17.8	ND(0.5)	ND(0.5)	1.2	16.6	15.4	-
DM119-072 ⁽¹) -	-	-	-	-	-	-	-	-	-	-	-	0.63	ND(0.5)	ND(0.5)	0.89	-	-	-
DM119-098 (1) -	-	-	-	-	-	-	-	-	-	-	-	1.1	ND(0.5)	ND(0.5)	15.6	-	-	-
DM120 (1	3.7	-	ND(0.5)	ND(0.5)	14	ND(0.5)	ND(0.5)	1	-	-	-	-	19.8	ND(0.5)	ND(0.5)	1	16.1	5.8	-
DM122-A (1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DM122-B (1) ND(0.	5) -	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	-	-	-	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND	ND	-
DM501-147 ⁽¹) ND(0.5	50) ND(0.50)	ND(0.50)	ND(0.50)	1.6	ND(0.5)	ND(0.5)	ND(0.5)	16.2	ND(0.5)	ND(0.5)	0.93	17.2	ND(0.5)	ND(0.5)	1.1	16.7	15.6	1
DM501-202 (1	6.1	ND(0.50)	ND(0.50)	0.9	2.3	ND(0.5)	ND(0.5)	ND(0.5)	12.1	ND(0.5)	ND(0.5)	1.1	14.5	ND(0.5)	ND(0.5)	1.1	8.4	12.2	2.4
DM502-079 (1	7.1	-	4.4	16	9	ND(0.5)	0.64	3.6	-	-	-	-	-	-	-	-	-	-	-
DM502-119 ⁽¹	6.5	-	2.9	67	4.7 J	ND(0.5)	2.1 J	42 J	-	-	-	-	2.1	ND(0.5)	0.53	29.5	-4.4	-2.6	-
DM506-100 ⁽¹) 21	ND(0.50)	8	24	36	ND(0.5)	14	34	ND(0.5)	ND(0.5)	0.6	1.4	1.2	ND(0.5)	ND(0.5)	ND(0.5)	-19.8	-34.8	0.7
DM506-185 ⁽¹	100	, ,	0.75	17	86 /69	0.53 /ND(0.5)	ND(0.5)/ND(0.5)	15/15	ND(0.5)	ND(0.5)	ND(0.5)	4.1	15.2	ND(0.5)	ND(0.5)	1.3	-144.8	-70.8	14.7
DM509	870	, ,	3.7	163.1	890	ND(2.5)	20	310	493	ND(1.0)	41.7	195.48	515	ND(4.0)	23.3	142	-355	-375	22
DM511-110 ⁽¹) 240	ND(0.50)	4.1	22	300	ND(0.5)	11 J	44 J	69.9	ND(0.5)	2	19.4	66.7	ND(0.5)	2.1	14.5	-173.3	-233.3	-3.2
DM511-135 ⁽¹	, - ,	-	-	-	- ND(0.5)/ND(0.5)	- - ND(0.5)/ND(0.5)	- ND(0.5)/ND(0.5)	- ND(0.5)/ND(0.5)	- ND(0.5)	-	- ND(0.5)	- ND(0.5)	- ND(0.5)	- ND(0.5)	- ND(0.5)	- ND(0.5)	-	-	-
DM512-155 ⁽¹) -	- ND(0.50)	-	-	ND(0.5)/ND(0.5)				ND(0.5)	-	ND	ND							
DM513-145 ⁽¹) 72	ND(0.50)	0.5	5.5	71 ND(0.5)	ND(0.5)	0.83	4.5	18.8 /18.4	ND(0.5)/ND(0.5)	0.62 /0.6	40.3 / 38.8	-	-	-	-	-	-	-
DM513-195 ⁽¹	, -	-	-	-	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	0.59	ND(0.5)	ND(0.5)	ND(0.5)	-	- ND(0.5)	- ND(0.5)	-	-	- 70.7	-
DM515-210 (1) 200	- 35	- 39	- 110.8	20 3	ND(0.5)	ND(0.5)	0.79 36	71.8 J	ND(0.5)	ND(0.5)	4.5	92.7 5.1	ND(0.5)	ND(0.5)	6 98.36	- -194.9	72.7 2.1	20.9
DM516-210 (1	. ∠00)	35	39	110.8	3	1.2 -	1.6	36	<u>-</u>	-	-	-	5.1 ND(0.5)	2.1 ND(0.5)	2.3 ND(0.5)	98.36 33.1	-194.9	2.1	-
DM605-105 ⁽¹ EW01 ⁽¹) -	-	-	-	-	-	-	-	-	-	-	-	ND(0.5)	ND(0.5)	ND(0.5)	-	-	-	-
EW01 (1		ND(5.0)	ND(5.0)	- 5.1	- 56	ND(0.5)	2.8	2	3.3	ND(0.5)	ND(0.5)	ND(0.5)	3.7	ND(0.5)	- ND(0.5)	- ND(0.5)	- -95.3	- -52.3	0.4
EW12-180	500		19	48	-	ND(0.5)	-	-	-	ND(0.5)	ND(0.3)	-	J. <i>i</i>	ND(0.5)	-	ND(0.5)	-	-52.5	-
EW12-180	400		7.5	34	-	-	-	-	-	-	-	-	-	-	-	-	_	_	_
EW12-239	4.9	ND(1.0)	ND(1.0)	ND(1.0)	-	-	-	-	-	-	-	-	-	-	-	-	_	-	_
211.12.200	0	= ()	= (•)	(•)															

Table 3.8

VOC Data for Basin Fill Wells - September 2001, 2006, 2016, and 2017

52nd Street Superfund Site, OU2 Area

Phoenix, Arizona

	Jı	ıly - Septembe	r 2001 (Base	eline)*		Septem	ber 2006			Septemb	er 2016			Septen	mber 2017		с	hange in TC)E
Well ID	TCE (μg/L)	1,1-DCA (μg/L)	1,1-DCE (μg/L)	1,2-DCE (μg/L)	TCE (µg/L)	1,1-DCA (μg/L)	1,1-DCE (μg/L)	1,2-DCE (μg/L)	TCE (µg/L)	1,1-DCA (μg/L)	1,1-DCE (μg/L)	1,2-DCE (μg/L)	TCE (µg/L)	1,1-DCA (μg/L)	1,1-DCE (µg/L)	1,2-DCE (µg/L)	2001-2017 (μg/L)	2006-2017 (μg/L)	2016-2017 (μg/L)
BF Wells (c	ont'd)																		
EW13-228	(2)	-	-	-	3.3	ND(0.5)	ND(0.5)	ND(0.5)	1.5	ND(0.50)	ND(0.50)	ND(0.50)	-	-	-	-	-	-	-
EW13-268	(2)	-	-	-	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	-	-	-	-	-	-	-	-	-	-
EW13-300	(2) ND(0.5)	UJ ND(0.5) UJ	ND(0.5) UJ	ND(0.5) UJ		-	-	-	-	-	-	-	-	-	-	-	-	-	-
EW19-D	ND(1.0		ND(1.0)	ND(1.0)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	-	-	-	-	-	-	-	-	-	-
EW22-D	ND(1.0) ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(0.50)	ND(1.0)	ND(1.0)	ND(1.0)	ND(0.50)	ND(1.0)	ND(1.0)	ND(1.0)	ND	ND	ND
NW04-D	-	-	-	-	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(0.50)	ND(1.0)	ND(1.0)	ND(1.0)	ND(0.50)	ND(1.0)	ND(1.0)	ND(1.0)	-	ND	ND
NW06-D	-	-	-	-	47	ND(1.0)	ND(1.0)	3.2	4.6	0.55 J	1.5 J	24.77	29.9	ND(1.0)	1.2	8.0	-	-17.1	25.3
NW07-D	-	-	-	-	25 /25	1.6 /1.7	8.4 /8.8	5.3 /5.5	4.3 / 4.4	ND(1.0)/ND(1.0)	1.5 / 1.4	ND(1.0)/ND(1.0)	4.8	ND(1.0)	1.0	ND(1.0)	-	-20.2	0.5
NW08-D	-	-	-	-		D) ND(1.0)/(ND(1.0)		, , , ,	ND(0.50)	ND(1.0)	ND(1.0)	ND(1.0)	ND(0.50)	ND(1.0)	ND(1.0)	ND(1.0)	-	ND	ND
NW08-M NW09-D	-	-	-	-	190 7.7	6.4 ND(1.0)	15 1.3	22 1.5	42.7 5.2	8.5 0.38 J	16.2 2.1	10.1 1.1	56.7 7.6	6.1 ND(1.0)	13.3 2.5	10.8 1.4	-	-133.3 -0.1	14 2.4
NW09-D NW09-D2	-	-	_	_	10	ND(1.0)	1.3	2	2.2	ND(1.0)	0.43 J	0.45 J	3.5	ND(1.0) ND(1.0)	ND(1.0)	ND(1.0)	-	-6.5	1.3
NW10-D2	-	-	-	-	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(0.50)	ND(1.0)	0.43 3 ND(1.0)	ND(1.0)	ND(0.50)	ND(1.0)	ND(1.0)	ND(1.0)	-	ND	ND
NW10-D	_	_	_	_	21	1	5.5	4.1	16.1	1.4	5.3	4.6	21.7	1.4	5.7	4.1	_	0.7	5.6
NW12-D	_	_	-	_	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(0.50)	ND(1.0)	ND(1.0)	ND(1.0)	ND(0.50)	ND(1.0)	ND(1.0)	ND(1.0)	_	ND	ND
NW13-D	-	-	-	-	6.4	ND(1.0)	1.5	ND(1.0)	3.0 J	ND(1.0)	ND(1.0)	ND(1.0)	3.3	ND(1.0)	ND(1.0)	ND(1.0)	-	-3.1	0.3
NW14-D	-	-	-	-	20	3.3	12	5.4	13.1 J	1.4 J	6.6 J	2.6 J	13.2	ND(1.0)	5.2	3.0	-	-6.8	0.1
NW16-D	-	-	-	-	-	-	-	-	72.9 J	ND(1.0)	ND(1.0)	2.1 J	36.7/34.8	ND(1.0) / ND(1.0) ND(1.0) / ND(1.0)	1.1 / 1.0	-	-	-36.2
NW19-D	-	-	-	-	-	-	-	-	33.8	5.1	20.0	10.7	40.4	4.6	17.8	8.8	-	-	6.6
NW22-D	-	-	-	-	-	-	-	-	20.2	ND(1.0)	ND(1.0)	1.2	28.8	ND(1.0)	ND(1.0)	1.5	-	-	8.6
NW23-D	-	-	-	-	-	-	-	-	13.3	3.6	9.9	3.6	18.8	4.0	10.5	4.4	-	-	5.5
NW24-D	-	-	-	-	-	-	-	-	201	ND(1.0)	1.9 J	13.2 J	187	ND(1.0)	1.4	11.2	-	-	-14
NW27-D	(2)	-	-	-	-	-	-	-	-	-	-	-	45	1.6	6.7	9.9	-	-	-
OU301-D	(3)	-	-	-	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	-	-	-	-	-	-	-	-	-	-
OU305-D	(3)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
OU305-DR	(3)	-	-	-	0.67	ND(0.5)	ND(0.5)	ND(0.5)	-	-	-	-	-	-	-	-	-	-	-
OU306-D	(3)	-	-	-	1.7 /1.7				-	-	-	-	-	-	-	-	-	-	-
OU308-D	(3)	-	-	-	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	- ND(0.50)	- ND(0.50)	- ND(0.50)	- ND(0.50)	-	-	-	-	-	-	-
OU312-D OU313-D	(3)	-	-	-	0.61 ND(0.5)	ND(0.5) ND(0.5)	ND(0.5) ND(0.5)	ND(0.5) ND(0.5)	ND(0.50) ND(0.50)	ND(0.50) ND(0.50)	ND(0.50) ND(0.50)	ND(0.50) ND(0.50)	-	-	-	-	-	-	-
OU313-D OU314-D	(3)	_	_	_	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.30)	ND(0.30)	- -	ND(0.30)	_		_	_		_	
PL202-N	⁽³⁾ 110	ND(2.0)	7.3	13	150	2.7	26	25	_	-	_	-	110	31	62	28	0	-40	_
PL2103	⁽³⁾ 4.6	ND(2.0)	ND(5.0)	ND(2.0)	2.2	ND(2.0)	ND(5.0)	ND(2.0)	_		_	-	-	-	-	-	-	-	-
PZ01-B	580	ND(2.0)	7.1	190	440 J	-	39 J	190 J	45.6	ND(1.0)	4.6	18.2	46.3	ND(1.0)	4.5	19.4	-533.7	-393.7	0.7
BF/BR Well	s																		
ASE19-B	(3) ND(2.0) ND(2.0)	ND(5.0)	ND(2.0)	16 /16	8.6 /8.7	ND(5.0)/ND(5.0)	ND(2.0)/ND(2.0)	0.7	ND(0.5)	ND(0.5)	ND(0.5)	0.5	ND(0.5)	ND(0.5)	ND(0.5)	-1.5	-15.5	-0.2
ASE120-B	(3)	-	-	-	-	-	-	-	7.7	ND(0.5)	ND(0.5)	1.1	11 / 11	ND(0.5) / ND(0.5	i) ND(0.5) / ND(0.5)	1.4 / 1.4	-	-	3.3
DM504	⁽¹⁾ 150 J	ND(5.0)UJ	9.3 J	34 J	69 /68	ND(0.5)/ND(0.5)	4.6 /4.4	23 /22	44.5	ND(0.5)	ND(0.5)	5.9	75.6	ND(0.5)	0.9	7	-74.4	6.6	31.1
BF/CV Wells																			
ASE29-A	(3) 2.6	ND(2.0)	ND(5)	ND(2.0)	ND(2.0)	ND(2.0)	ND(5)	ND(2.0)	-	-	-	-	-	-	-	-	-	-	-
BC11-A	(3) 62	ND(2.0)	5.6	12	120	3.8	17	27	120	21	41	30	110	22	36	27	48	-10	-10
BC17 DM508	(3) 32 (1) -	ND(2.0) -	ND(5.0) -	18 -	11 -	ND(2.0)	ND(5.0) -	3.7	3.9	ND(0.5)	ND(0.5) -	ND(0.5)	5.1 -	ND(0.5)	ND(0.5)	ND(0.5)	-26.9 -	-5.9 -	1.2 -
BF/CV/BR V	Vells																		
ASE22-B	(3) 320	45	160	69	250/230	28 /26	74 /74	44/44	2.1/2.1	ND(0.5)/ND(0.5)	ND(0.5)/ND(0.5	5) ND(0.5)/ND(0.5)	1.8	ND(0.5)	ND(0.5)	ND(0.5)	-318.2	-248.2	-0.3
ASE72-B	(3)	-	-	-	350	12	27	51	48	ND(1.3)	4.2	5.3	110	32	67	29	-	-240	62

Table 3.8

VOC Data for Basin Fill Wells - September 2001, 2006, 2016, and 2017 52nd Street Superfund Site, OU2 Area Phoenix, Arizona

	July	- September	2001 (Base	line)*		Septeml	ber 2006			Septemb	per 2016			Septem	ber 2017		Cha	nge in TCI	<u> </u>
	TCE	1,1-DCA	1,1-DCE	1,2-DCE	TCE	1,1-DCA	1,1-DCE	1,2-DCE	TCE	1,1-DCA	1,1-DCE	1,2-DCE	TCE	1,1-DCA	1,1-DCE	1,2-DCE	2001-2017 20	006-2017	2016-2017
Well ID	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)

Notes:

TCE - Trichloroethylene
1,1-DCA - 1,1 Dichloroethane
1,1-DCE - 1,1 Dichloroethene
1,2-DCE - 1,2 Dichloroethene

µg/L - micrograms per liter

VOC - Volatile Organic Compound

VOC - Volatile Organic Compound
"-" - Not sampled

BF - Basin Fill BR - Bedrock CV - Colluvium

A positive value indicates an increase in TCE concentration (e.g., 1.8)

A negative value indicates a decrease in TCE concentration (e.g., -1.8)

J - Analyte was analyzed for and was positively defined, but the reported numerical value may not be consistent with the amount actually present in the environmental sample.

Results are estimated although the data are considered usable and may be used as appropriate to meet project objectives. Results are qualitatively acceptable and quantitatively uncertain.

UJ - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

ND - Not detecte

ND(x.x) - Not detected above the reported sample quantitation limit x.x. For VOC analytical data, there is not a quantitation limit due to varying limits in data used

- (1) Sampled by Clear Creek Associates
- (2) Sampled by ERM
- (3) Sampled by CH2M
- * The value is the highest for a particular analyte collected during baseline sampling event (July September 2001)

Table 3.9

VOC Data for Bedrock and Colluvium Wells - September 2001, 2006, 2016, and 2017

52nd Street Superfund Site, OU2 Area

Phoenix, Arizona

		July - Septe	mber 2001 (Baselin	e)*		Septemb	per 2006			Septem	ber 2016			Septembe	r 2017		C	hange in T	CE
	TCE	1,1-DCA	1,1-DCE	1,2-DCE	TCE	1,1-DCA	1,1-DCE	1,2-DCE	TCE	1,1-DCA	1,1-DCE	1,2-DCE	TCE	1,1-DCA	1,1-DCE	1,2-DCE			2016-2017
Well ID	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)
BR Wells																			
ASE19-C	(2) 2.7	ND(2.0)	ND(5.0)	ND(2.0)	2.8	ND(2.0)	ND(5.0)	ND(2.0)	4	ND(0.5)	0.6	ND(0.5)	3.5	ND(0.5)	ND(0.5)	ND(0.5)	0.8	0.7	-0.5
ASE20-B	(2) 3.2	ND(2.0)	ND(5.0)	ND(2.0)	2.0	ND(2.0)	ND(5.0)	ND(2.0)	-	-	-	-	-	-	-	-	-	-	-
ASE20-C	⁽²⁾ 11	ND(2.0)	ND(5.0)	ND(2.0)	8.2	ND(2.0)	ND(5.0)	ND(2.0)	5.6 J	0.5 J	ND(0.5)UJ	ND(0.5)UJ	4.6 J	ND(0.5)UJ	ND(0.5)UJ	ND(0.5)UJ	-6.4	-3.6	-1
ASE21-C	(2) ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND	ND	ND
ASE22-C	⁽²⁾ 19	ND(2.0)	ND(5.0)	ND(2.0)	43	ND(2.0)	ND(5.0)	ND(2.0)	79	0.8	7.4	1.8	73	0.8	6.6	1.5	54	30	-6
ASE24-C	⁽²⁾ 12 /11	ND(2.0)/ND(2.0)	ND(5.0)/ND(5.0)	ND(2.0)/ND(2.0)	22	ND(2.0)	ND(5.0)	ND(2.0)	29	ND(0.5)	0.6	1.6	22	ND(0.5)	ND(0.5)	ND(0.5)	10	0	-7
ASE25-C	⁽²⁾ 68	4.9	46	14	21	ND(2.0)	9.6	3.2	12	0.7	4.5	2.2	13	1	5.6	2.4	-55	-8	1
ASE42-C	⁽²⁾ 62	66	57	25	19	18	9.2	7.2	-	-	-	-	-	-	-	-	-	-	-
ASE43-C	(2) ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	1.2	ND(0.5)	ND(0.5)	ND(0.5)	-0.8	-0.8	0.7
ASE50-C	(2) ND(2.0)	ND(2.0)	ND(5.0)	ND(2.0)	ND(2.0)/ND(2.0) ND(2.0)/ND(2.0)	ND(5.0)/ND(5.0)	ND(2.0)/ND(2.0)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND	ND	ND
ASE73-C	(2)	-	=	-	95	16	20	25	71	12	17	17	63 J	11 J	15 J	18 J	-	-32	-8
ASE75-C	(2)	-	-	-	3.2	ND(2.0)	ND(5.0)	ND(2.0)	11	ND(0.5)	1.1	2.9	11 / 12 J	ND(0.5) / ND(0.5)UJ	1.2 / 1.2 J	2.7 / 2.8 J	-	7.8	0
ASE79-C	(2)	-	-	-	2.4 J	ND(2.0)	ND(5.0)	ND(2.0)	3.1	ND(0.5)	ND(0.5)	0.9	4.6	ND(0.5)	ND(0.5)	0.9	-	2.2	1.5
ASE82-C	(2)	-	-	-	34	2.2	16	4.7	13	0.8	6.6	1.6	8.1	0.7	3.4	0.8	-	-25.9	-4.9
ASE83-C	(2)	-	-	-	6.8	ND(2.0)	ND(5.0)	2.6	3	1.4 ND(0.5)	1.3	0.9	2.5	1 ND(0.5)	0.9	ND(0.5)	-	-4.3	-0.5
ASE84-C	(2)	-	-	-	9.7	5.6	ND(5.0)	3.7	7.9 0.9	ND(0.5) ND(0.5)	0.8 ND(0.5)	1.1 ND(0.5)	6 2.4	ND(0.5) ND(0.5)	0.5 ND(0.5)	0.8 ND(0.5)	-	-3.7	-1.9
BC08-C	(2)	-	-	-	4.2 2.1	ND(2.0)	ND(5.0)	ND(2.0) ND(2.0)	0.9 15	ND(0.5)	ND(0.5)	3.2	12	ND(0.5)	ND(0.5) ND(0.5)	2.6	-	-1.8 9.9	1.5 -3
BC10-C BR01	(2)	-	-	-	2.1	ND(2.0)	ND(5.0)		13	ND(0.5)		3.2	12		ND(0.5)	2.0	-	9.9	-3
BR02	(2)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BR03	(2)	_	_	_	_	_	-	_	-	_	_	_	- -	- -	-	- -	_		-
BR04	(2)	-	- -	- -	-	- -	_	-	-	_	- -	_	- -	- -	-	-	-	-	-
DM119-137	(1) 2.3	_	ND(0.5)	ND(0.5)	_	_	_	_	_	_	_	_	ND(0.5)	ND(0.5)	ND(0.5)	34.4	-1.8	_	_
DM119-204	(1)	_	-	-	_	_	_	_	_	_	_	_	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	_	_
DM119-244	(1)	<u>-</u>	-	-	<u>-</u>	_	<u>-</u>	-	-	-	_	<u>-</u>	-	-	-	-	_	_	-
DM119-284	(1) ND(0.5)	-	ND(0.5)	ND(0.5)	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-
DM501-267	(1) _	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DM501-331	(1) -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DM501-387	(1) -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DM502-161	(1) ND(0.5)	-	0.81	12	ND(0.5)	ND(0.5)	ND(0.5)	1.9	-	-	-	-	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND	ND	-
DM502-240	⁽¹⁾ ND(0.5)	-	ND(0.5)	0.72	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	-	-	-	-	-	-	-	-	-	-
DM502-335	⁽¹⁾ ND(0.5)	-	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	-	=	-	-	=	-	-	-	-	-
DM506-240	(1) 3.8	ND(0.50)	ND(0.50)	1.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DM506-305	(1) -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DM506-375	(1) -	-	=	-	-	=	-	-	=	-	=	-	-	<u>=</u>	-	-	-	-	-
DM507-240	(1) ND(0.50)	ND(0.50)	ND(0.50)	5.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DM507-280	(1) ND(0.50)	ND(0.50)	ND(0.50)	0.89	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DM507-315	(1) ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	-	-	-	-	-	- ND(0.5)	-	-	-	- ND(0.5)	-	-	-	-	-
DM510-175	(1) 64	ND(0.50)	ND(0.50)	5.1	68	ND(0.5)	ND(0.5)	4.6	111	ND(0.5)	1.6	19.9	151	ND(0.5)	1.8	18.4	87	83	40
DM510-235	(1) 0.75	ND(0.50)	ND(0.50)	ND(0.50)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DM510-290 DM511-165	-	- ND(0 E0)/ND(0 E0)	- ND(0 50)/ND(0 50)	- ND(0.50)/ND(0.50)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	(1)	ND(0.50)/ND(0.50)	ND(0.50)/ND(0.50)	ND(0.50)/ND(0.50)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DM511-225 DM511-290	(1)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DM511-290 DM512-225	(1)	- -	- -	-	-	-	-	-	-	-	-	-	- -	-	- -	-	-	-	-
DM512-225 DM512-295	(1)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DM512-295 DM512-345	(1)	-	- -	- -	-	<u>-</u>	-	- -	- -	-	<u>-</u>	-	- -	- -	-	-	-	-	-
DM512-343 DM513-240	(1) _	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	_	-
DM513-280	(1) ND(0.50)	ND(0.50)	ND(0.50)	4.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DM513-315	(1)	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-
DM514-105	⁽¹⁾ 150	ND(0.50)	ND(0.50)	51	3.9 /3.0	ND(0.5)/ND(0.5)	ND(0.5)/ND(0.5)	1.9 /1.6	ND(0.5)/ND(0.5)	ND(0.5)/ND(0.5)	ND(0.5)/ND(0.5)	ND(0.5)/ND(0.5)	ND(0.5)/ND(0.5) ND(0.5)/ND(0.5)	ND(0.5)/ND(0.5)	ND(0.5)/ND(0.5)	-149.5	-3.4	ND/ND
DM514-180	(1) ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)		-		-	=	· , , , ,	-	-	-	-	-
DM514-240	(1) -	-	-	-	-	-	- ,	-	-	-	-	-	-	-	-	-	-	-	-
DM514-295	(1) -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DM515-265	⁽¹⁾ ND(0.50)	0.69	ND(0.50)	1.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CUD 042022 (44)																			

Table 3.9

VOC Data for Bedrock and Colluvium Wells - September 2001, 2006, 2016, and 2017 52nd Street Superfund Site, OU2 Area Phoenix, Arizona

		July - Septe	mber 2001 (Baselin	e)*		Septem	ber 2006			Septemb	per 2016			Septemb	er 2017		С	hange in TCI	Æ
	TCE	1,1-DCA	1,1-DCE	1,2-DCE	TCE	1,1-DCA	1,1-DCE	1,2-DCE	TCE	1,1-DCA	1,1-DCE	1,2-DCE	TCE	1,1-DCA	1,1-DCE	1,2-DCE	2001-2017	2006-2017	2016-2017
Well ID	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
DM515-320	(1) -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BR Wells (cont	'd)																		
DM515-380	(1) -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=	-	-	-
	⁽¹⁾ ND(0.50)	ND(0.50)	ND(0.50)	1.3	ND(0.50)	ND(0.50)	ND(0.50)	0.75	-	-	-	-	-	-	-	-	-	-	-
DM516-335	(1) -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DM516-390	(1) -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DM517-235	(1) 2.4	0.92	1.3	0.72	1.3	ND(0.50)	ND(0.50)	ND(0.50)	-	-	-	-	-	-	-	-	-	-	-
DM517-315	(1) -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DM517-365	(1) -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DM605-170	(1) -	-	-	-	-	-	-	-	-	-	-	-	ND(0.5)	ND(0.5)	2.4	37.5	-	-	-
DM605-240	(1) -	-	-	-	-	-	-	-	-	-	-	-	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	-	-
DM605-290	(1) -	-	-	-	-	-	-	-	-	-	-	-	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	-	-
PL103-C	(2)	-	-	-	170	ND(2.0)	5.1	33	-	-	-	-	63	0.8	2.6	7.3	-	-107	-
PZ01-D	17	ND(2.0)	ND(2.0)	2.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PZ02-D	28	ND(2.0)	ND(2.0)	4.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CV Wells																			
ASE47-B	(2) 47	ND(2.0)	ND(5.0)	13	91 J	2.6	6.7	27	52 J	20	63 J	17	54 / 53	23 /23	73 / 71	18 18	7	-37	2
ASE71-B	(2)	-	-	-	45 J	5.2	ND(5.0)	11	12	0.5	0.7	2.1	15	0.9	0.6	2.4	-	-30	3
DM507-188	⁽¹⁾ 1.6	ND(0.50)	2.9	160	1.4	ND(0.5)	5.8	93	-	-	-	-	-	-	-	-	-	-	-
DM517-185	⁽¹⁾ 41	33	22	17	12	5.5	4.8	5.0	3.6	1.2	1.5	0.71	-	-	-	-	-	-	-
NW15-S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
NW17-S	-	-	-	-	-	-	-	-	47.6	1.0	2.0	10.0 J	51.9	ND(1.0)	1.8 J	9.7 J	-	-	4.3
NW18-M	-	-	-	-	-	-	-	-	70.3 J /67.7 J	0.22 J / ND(1.0)	1.2 J /1.2 J	4.0 J /3.5 J	-	-	-	-	-	-	-
CV/BR Wells																			
ASE23-B	(2) 66	ND(2.0)	ND(5.0)	17	84	5.0	10	34	63	19	35	22	37	13	16	15	-29	-47	-26
ASE43-B	(2) 5.4	ND(2.0)	ND(5.0)	ND(2.0)	2.4	ND(2.0)	ND(5.0)	ND(2.0)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-4.9	-1.9	ND
ASE75-B	(2)	-	-	-	17 /17	ND(2.0)/ND(2.0)	ND(5.0)/ND(5.0)	3.3 /3.4	33 / 34	3.3 /3.2	9.1/8.9	9.9 /10	38	5.5	12	13	-	21	5
DM505	(2)	-	-	-	-	-	-	-	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	-	-	-	-	-	-	-
									()	` '	(,	` '							

Notes:

1,2-DCE - 1,2 Dichloroethene

"-" - Not sampled

BR - Bedrock

CV - Colluvium

TCE - Trichloroethylene A positive value indicates an increase in TCE concentration (e.g., 1.8)

1,1-DCA - 1,1 Dichloroethane A negative value indicates a decrease in TCE concentration (e.g., -1.8)

1,1-DCE - 1,1 Dichloroethene ND - Not detected

ND(x.x) - Not detected above the reported sample quantitation limit x.x. For VOC analytical data, there is not a quantitation limit due to varying limits in data used.

μg/L - micrograms per liter J - Analyte was analyzed for and was positively defined, but the reported numerical value may not be consistent with the amount actually present in the environmental sample. VOC - Volatile Organic Compound

Results are estimated although the data are considered usable and may be used as appropriate to meet project objectives. Results are qualitatively acceptable and quantitatively uncertain.

(1) Sampled by Clear Creek Associates

(2) Sampled by CH2MHill

* The value is the highest for a particular analyte collected during baseline sampling event (July - September 2001)

Table 4.1

Process Summary - Volumes
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

Volume (Gallons) Influent¹ **Treated Backwash EWN EWM EWS** (EWN+M+S) Discharge Wastewater Date (x1,000)(x1,000)(x1,000)(x1,000)(x1,000)Discharge **January 2017 Totals** 2,889 5,299 1,164 9,352 9,045 13,150 **February 2017 Totals** 2,669 5,060 1,745 9,474 9,072 31,100 March 2017 Totals 8,560 15,051 5,622 29,233 28,963 30,600 80 **April 2017 Totals** 13,838 22,035 8,897 44,770 44,860 May 2017 Totals 19,830 32,169 12,330 64,329 64,213 111,680 June 2017 Totals 18,809 31,000 11,291 61,100 60,796 10,770 July 2017 Totals 19,169 32,486 11,149 62,804 62,499 14,770 **August 2017 Totals** 12,745 32,747 10,935 56,427 57,076 179,270 September 2017 Totals 18,176 30,443 10,599 59,218 59,784 9,190 October 2017 Totals 10,702 17,571 30,397 58,669 59,845 12,290 **November 2017 Totals** 15,920 29,431 9,930 55,281 55,824 84,570 **December 2017 Totals** 30,184 16,302 9,642 56,128 56,414 23,560 **Total Gallons 2017** 166,478 296,302 104,006 566,785 568,391 521,030 Total Gallons 2001 to 2017 4,485,472 9,550,149 1,983,582 16,019,160 15,787,221 13,435,902

Notes:

¹ The monthly combined influent flow is computed by adding the monthly influent flow from each extraction well as recorded on the SCADA system. The manufacturer's stated accuracy for the flow meters is plus or minus 2 percent.

Table 4.2

Process Summary - Run Times
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

Run Time (Hours) Backwash Backwash Date **EWN EWM EWS** Pump 1 Pump 2 **January 2017 Totals** 126.1 126.1 126.1 1.8 3.6 **February 2017 Totals** 104.6 104.4 104.2 13.0 1.5 March 2017 Totals 329.2 9.6 329.6 329.5 1.5 **April 2017 Totals** 528.7 531.1 531.6 0.0 0.0 May 2017 Totals 743.5 743.5 744.0 17.5 20.8 June 2017 Totals 720.0 719.9 720.0 3.3 0.0 July 2017 Totals 737.1 744.0 3.1 401.1 744.0 0.0 **August 2017 Totals** 481.7 735.0 738.1 47.8 September 2017 Totals 720.0 2.6 0.0 720.0 720.0 October 2017 Totals 0.0 744.0 744.0 744.0 3.3 **November 2017 Totals** 719.9 717.5 720.0 55.1 0.0 **December 2017 Totals** 744.0 744.0 744.0 104.1 0.0 Total Hours 2001 to 2017 121,464.0 126,789.7 3,445.5 3,587.5 122,318.5

Table 4.3

Summary of System 2017 Monthly Up-Time Precentages
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

		Average Per	cent Uptime	
Month	EWN	EWM	EWS	System
January 2017	16.9%	16.9%	16.9%	16.9%
January 2017	100%*	100%*	100%*	100%*
February 2017	15.6%	15.5%	15.5%	15.6%
rebluary 2017	100%*	100%*	100%*	100%*
March 2017	44.3%	44.3%	44.2%	44.3%
March 2017	100%*	100%*	100%*	100%*
April 2017	73.4%	73.8%	73.8%	73.7%
April 2017	100%**	100%**	100%**	100%**
May 2017	99.9%	99.9%	100.0%	100.0%
June 2017	100.0%	100.0%	100.0%	100.0%
July 2017	100.0%	99.1%	100.0%	100.0%
August 2017	64.7%	98.8%	99.2%	99.2%
September 2017	100.0%	100.0%	100.0%	100.0%
October 2017	100.0%	100.0%	100.0%	100.0%
November 2017	100.0%	99.7%	100.0%	100.0%
December 2017	100.0%	100.0%	100.0%	100.0%

Notes:

^{*}Annual maintenance and SRP-mandated shutdowns removed from calculations

^{**}Shutdown due to utility strike removed from calculations

Table 4.4

Summary of Extraction Well Flow Rate Set Point Changes
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

	Extraction	on Well Pumpin	g Rates		
Date of	EWN	EWM	EWS	Total	
Flow Change	(gpm)	(gpm)	(gpm)	(gpm)	Comments
9/26/2001 (Startup)	1,350	1,750	850	3,950	
9/27 to 10/11/2001	NC	NC	0	3,100	
10/11/2001	NC	NC	550	3,650	
10/12/2001	NC	NC	550 to 600	3,700	EWS increased as part of startup flow adjustment.
11/13/2001	NC	NC	600 to 550	3,650	EWS reduced due to drop in water table elevation.
1/3/2002	1,350 to 0	1,750 to 0	550 to 0	0	Annual SRP Grand Canal Maintenance Shutdown.
2/4/2002	0 to 1,350	0 to 1,750	0 to 550	3,650	Extraction and Treatment System restarted.
3/19/2002	NC	NC	550 to 500	3,600	EWM reduced to alleviate air entrainment.
4/9/2002	1,350 to 1,250	1,750 to 1,650	NC	3,400	
7/9/2002	1,250 to 1,150) NC	NC	3,300	EWN reduced to alleviate air entrainment.
7/22/2002	NC	NC	500 to 450	3,250	EWS reduced due to low groundwater level.
9/20/2002	NC	NC	450 to 400	3,200	EWS reduced due to low groundwater level.
11/1/2002	1,150 to 850	1,650 to 1,550	NC	2,800	EWN pump bowl change-out.
11/15/2002	NC	1,550 to 1,450	NC	2,700	EWM reduced to assist EWS pumping rate.
11/17/2002	NC	NC	400 to 350	2,650	EWS reduced due to low groundwater level.
1/8/2003	850 to 0	1,450 to 0	350 to 0	0	Annual SRP Grand Canal Maintenance Shutdown.
1/31/2003	0 to 850	0 to 1,450	0 to 350	2,650	Extraction and Treatment System restarted.
6/2/2003	NC	NC	350 to 300	2,600	EWS reduced due to low groundwater level.
9/30/2003	850 to 650	NC	NC	2,400	EWS reduced due to low groundwater level.
10/7/2003	NC	NC	300 to 250	2,350	EWS was maintained at 250 gpm while operating in the cyclical pumping mode (20 hours on, 4 hours off), for an average flow rate of 209 gpm.
1/9/2004	650 to 0	1,450 to 0	250 to 0	0	Annual SRP Grand Canal Maintenance Shutdown.
2/11/2004	NC	0 to 1,450	0 to 250		Restart after Annual SRP Grand Canal Maintenance Shutdown.
2/11/2004	NC	1,450 to 1,650	250 to 200	1,850	EWS pump replaced with a 200 gpm submersible pump. EWN was kept offline after the restart of the system. EWN will remain offline until further notice. Adjusted flows to alleviate air entrainment.
6/7/2004	NC	1,650 to 0	NC	200	EWM down to replace pump bowl.
6/8/2004	0 to 850	0	NC	1,050	EWN up during EWM maintenance shutdown.
6/28/2004	850 to 0	0 to 1,550	NC	1,750	EWM restart after replacing pump bowl.
7/2/2004	0	1,550 to 1,500	NC	1,700	EWM reduced to alleviate air entrainment.
7/6/2004	0	1,500 to 1,400	NC	1,600	EWM reduced to alleviate air entrainment.
9/22/2004	0	1,400 to 1,350	NC	1,550	EWM reduced to alleviate air entrainment.
9/23/2004	600	1,350 to 1,300	NC	2,100	EWM reduced to alleviate air entrainment, started EWN to ensure capture.
10/5/2004	600	1,300	200 to 0	1,900	EWS down for pump motor replacement and well cleaning.
10/14/2004	600	1,300	0 to 200	2,100	EWS restarted after pump motor replacement and well cleaning.
11/20/2004	600 to 850	1,300 to 0	NC	1,050	EWM flow control valve malfunction.
11/24/2004	850 to 750	0 to 1,300	NC	2,250	EWM back online after fixing flow control valve.
11/30/2004	750 to 600	NC	NC	2,100	EWN back to normal operational set point.
12/29/2004	600 to 0	1,300 to 0	200 to 0	0	SRP Grand Canal shut down until January 7, 2005 due to flooding caused by heavy rains.
1/7/2005	NC	NC	NC	0	Annual SRP Grand Canal Maintenance Shutdown.
2/8/2005	0 to 800	NC	0 to 200	1,000	EWM was off for line shaft bearing replacement and pump motor leveling. EWN increased to ensure capture.
2/16/2005	800 to 600	0 to 1,350	NC	2,150	EWM restarted after line shaft bearing replacement and pump motor leveling. EWN reduced to prevent air entrainment.

Table 4.4

Summary of Extraction Well Flow Rate Set Point Changes
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

	Extracti	ion Well Pumpin	g Rates		
Date of	EWN	EWM	EWS	Total	
Flow Change	(gpm)	(gpm)	(gpm)	(gpm)	Comments
12/6/2005	600 to 0	1,350 to 0	200 to 0	0	Extraction and Treatment System shut down as a precaution due to the presence of TCE in the facility effluent. System to be restarted following carbon changeout in GAC Vessels.
12/14/2005	NC	0 to 1,350	NC	1,350	EWM restarted following carbon changeouts in GAC vessels.
12/15/2005	0 to 600	NC	0 to 200	2,150	EWS and EWN restarted following carbon changeouts in GAC vessels.
1/6/2006	600 to 0	1,350 to 0	200 to 0	0	Annual SRP Grand Canal Maintenance Shutdown.
2/6/2006	0 to 600	0 to 1,350	0 to 200	2,150	Restart after Annual SRP Grand Canal Maintenance Shutdown.
1/5/2007	600 to 0	1,350 to 0	200 to 0	0	Annual SRP Grand Canal Maintenance Shutdown.
2/5/2007	0 to 600	0 to 1,350	0 to 200	2,150	Restart after Annual SRP Grand Canal Maintenance Shutdown.
7/1/2007	600 to 0	NC	NC	1,550	EWN was offline for soft start replacement (due to power surge).
7/2/2007	NC	1,350 to 1,550	200	1,750	EWM increased to ensure capture.
7/6/2007	NC	NC	200 to 0	1,550	EWS was offline for pump replacement due to pump thrust bearings (pump replaced).
7/13/2007	0 to 600	1,550 to 1,350	0 to 200	2,150	EWN and EWS restarted following repairs to extraction wells. EWM reduced to prevent air entrainment.
12/4/2007	600 to 0	1,350 to 0	200 to 0	0	SRP Grand Canal shut down until December 17, 2007, due to SRP valve maintenance.
12/17/2007	0 to 600	0 to 1,350	0 to 200	2,150	Restart after SRP Grand Canal Shutdown.
1/4/2008	600 to 0	1,350 to 0	200 to 0	0	Annual SRP Grand Canal Maintenance Shutdown.
2/4/2008	0 to 600	0 to 1,350	0 to 200	2,150	Restart after Annual SRP Grand Canal Maintenance Shutdown.
4/29/2008	NC	NC	200 to 240	2,190	EWS was increased to test whether pump could operate at a higher flow rate and maximize groundwater capture.
1/9/2009	600 to 0	1,350 to 0	240 to 0	0	Annual SRP Grand Canal Maintenance Shutdown.
2/9/2009	0 to 600	0 to 1,350	0 to 240	2,190	Restart after Annual SRP Grand Canal Maintenance Shutdown.
1/11/2010	600 to 0	1,350 to 0	240 to 0	0	Annual SRP Grand Canal Maintenance Shutdown.
2/8/2010	0 to 600	0 to 1,350	0 to 240	2,190	Restart after Annual SRP Grand Canal Maintenance Shutdown.
8/4/2010	600 to 700	1,350 to 1,550	240 to 0	2,250	EWS was offline for pump replacement and well rehabilitation. EWN and EWM setpoints were increased to increase capture.
8/24/2010	700 to 600	1,550 to 1,290	0 to 300	2,190	EWM was decreased and EWS was increased to increase groundwater capture in southern part of plume.
11/15/2010	600 to 800	NC	NC	2,390	EWN was increased to increase groundwater capture in northern part of plume.
1/17/2011	800 to 0	1,290 to 0	300 to 0	0	Annual SRP Grand Canal Maintenance Shutdown.
1/21/2011	0 to 800	0 to 1,290	0 to 300	2,390	Restart after Annual SRP Grand Canal Maintenance Shutdown.
8/1/2011	800 to 700	1,290 to 1,390	NC	2,390	EWN set point was reduced due to a decrease in groundwater level. EWM set point was increased to increase capture.
8/21/2011	700 to 0	1,390 to 1,600	NC	1,900	EWN was offline for pump replacement due to damaged pump impellers. EWM set point was increased to increase capture.
8/29/2011	NC	1,600 to 1,860	NC	2,160	EWM set point was increased to increase capture.
10/6/2011	0 to 600	1,860 to 1,490	NC	2,390	EWN was restarted following pump and well rehabilitation.
1/9/2012	600 to 0	1,490 to 0	300 to 0	0	Annual SRP Grand Canal Maintenance Shutdown.
2/6/2012	0 to 600	0 to 1,490	0	2,090	Restart after Annual SRP Grand Canal Maintenance Shutdown. EWS failed to start due to damaged thrust bearing.
3/9/2012	NC	NC	0 to 300	2,390	EWS was restarted following pump replacement and well rehabilitation.
7/12/2012	NC	1,490 to 1,860	300 to 0	2,460	EWS was shutdown for VSD retrofit. EWM set point was increased to increase capture.
GHD 013932 (41)					

Summary of Extraction Well Flow Rate Set Point Changes 52nd Street Superfund Site, OU2 Area

Phoenix, Arizona

Table 4.4

		on Well Pumpir	9		
Date of	EWN	EWM	EWS	Total	
Flow Change	(gpm)	(gpm)	(gpm)	(gpm)	Comments
7/16/2012	600 to 0	NC	NC	1,860	EWN was shutdown for VSD retrofit.
7/17/2012	NC	1,860	0 to 300	2,160	EWS was restarted following VSD retrofit.
7/19/2012	0 to 600	1,860 to 1,490	NC	2,390	EWN was restarted following VSD retrofit.
12/4/2012	NC	NC	300 to 270	2,360	EWS set point was decreased to troublshoot flow ocillations.
12/11/2012	NC	1,490 to 1,520	NC	2,390	EWM set point was increased to increase capture.
12/13/2012	NC	NC	270 to 280	2,400	EWS set point was increased for flow ocillations troubleshooting.
12/28/2012	NC	NC	280 to 290	2,410	EWS set point was increased for flow ocillations troubleshooting.
12/31/2012	NC	NC	285	2,405	EWS set point was increased for flow ocillations troubleshooting.
1/7/2013	600 to 0	1,490 to 0	300 to 0	0	Annual SRP Grand Canal Maintenance Shutdown.
1/18/2013	0 to 600	0 to 1,500	300	2,400	Restart after Annual SRP Grand Canal Maintenance Shutdown.
2/4/2013	600 to 700	1,500 to 1,400	NC	2,400	Air entrainment in EWM flow reduction, flow increase in EWN.
3/1/2013	700 to 600	NC	NC	2,300	Air entrainment in EWN flow reduction.
4/12/2013	600 to 550	1,400 to 1,350	NC	2,200	Air entrainment in EWN and EWM flow reductions.
4/19/2013	550 to 600	1,350 to 1,300	NC	2,200	Air entrainment in EWM flow reduction, flow increase in EWN.
5/16/2013	600 to 550	NC	NC	2,150	Air entrainment in EWN flow reductions.
5/28/2013	NC	1,300 to 1,250	NC	2,100	Air entrainment in EWM flow reductions.
6/5/2013	NC	NC	300 to 0	1,800	EWS was offline for pump and motor replacement due to failed thrust bearing.
6/20/2013	NC	NC	0 to 300	2,100	EWS increased following replacement of pump and motor.
6/21/2013	550 to 500	NC	NC	2,050	Air entrainment in EWN flow reduction.
6/28/2013	NC	1,250 to 1,200	NC	2,000	Air entrainment in EWM flow reduction.
7/30/2013	NC	1,200 to 1,150	NC	1,950	Air entrainment in EWM flow reduction.
9/9/2013	NC	1,150 to 1,100	NC	1,900	Air entrainment in EWM flow reduction.
10/2/2013	500 to 475	1,100 to 1,050	NC	1,825	Air entrainment in EWN and EWM flow reductions.
10/21/2013	475 to 400	NC	NC	1,750	Air entrainment in EWN flow reductions.
11/21/2013	400	1,050 to 1,000	NC	1,700	Air entrainment in EWM flow reduction.
12/3/2013	400 to 0	1,000 to 1,000	300 to 0	0	SRP shutdown due to low water demand in the SRP Grand Canal.
12/9/2013	0 to 400	0 to 1,000	0 to 300	1,700	Restart after SRP Grand Canal Shutdown.
1/3/2014	400 to 0	1,000 to 0	300 to 0	0	Annual SRP Grand Canal Maintenance Shutdown.
1/25/2014	0 to 400	0 to 1,500	0 to 300	-	Restart after Annual SRP Grand Canal Maintenance Shutdown.
1/28/2014	0 to 400	•	0 to 300	2,200	Air entrainment in EWM flow reduction.
	NC	1.500 to 1,300	NC	2,000	
1/31/2014	NC	1,300 to 1,200	NC NC	1,900	Air entrainment in EWM flow reduction. Air entrainment in EWM flow reduction.
2/5/2014		1,200 to 1,100		1,800	
4/14/2014 6/7/2014	NC 400 to 500	1,100 to 1,000 NC	NC 300 to 0	1,700 1,500	Air entrainment in EWM flow reduction. EWS was offline for pump and motor replacement due to failed thrust
					bearing. EWN was increased to increase capture.
7/17/2014	NC	NC	0 to 250	1,750	EWS increased following replacement of pump and motor.
7/20/2014	NC	NC	250 to 0	1,500	EWS was offline to repair faulty motor leads.
7/22/2014	500 to 400	NC	NC	1,400	Air entrainment in EWN flow reduction.
7/24/2014	NC	NC	0 to 250	1,650	EWS increased following repair of motor leads.
7/30/2014	NC	1,000 to 900	NC	1,550	Air entrainment in EWM flow reduction.
11/10/2014	NC	900 to 0	NC	650	EWM was offline to replace shaft oil seal and re-shim the well head and pump motor.
11/11/2014	NC	0 to 900	NC	1,550	EWM increased following shaft oil seal replacement and well head and pump motor re-shimming.
11/25/2014	NC	NC	250 to 275	1,575	EWS set point was increased to increase capture.
	400 to 0	900 to 0	275 to 0	0	Annual SRP Grand Canal Maintenance Shutdown.
12/29/2014	400 10 0	000 10 0		-	

Table 4.4

Summary of Extraction Well Flow Rate Set Point Changes
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

	Extraction	on Well Pumpii	ng Rates		
Date of	EWN	EWM	EWS	Total	
Flow Change	(gpm)	(gpm)	(gpm)	(gpm)	Comments
2/11/2015	500 to 400	NC	NC	1,800	Air entrainment in EWN flow reduction.
2/17/2015	NC	1,100 to 1,000	NC	1,700	Air entrainment in EWM flow reduction.
3/23/2015	NC	1,000 to 950	NC	1,650	Air entrainment in EWM flow reduction.
5/12/2015	NC	950 to 900	NC	1,600	Air entrainment in EWM flow reduction.
5/26/2015	NC	NC	300 to 275	1,575	Air entrainment in EWS flow reduction.
5/27/2015	NC	NC	275 to 250	1,550	Air entrainment in EWS flow reduction.
6/26/2015	NC	NC	250 to 225	1,525	Air entrainment in EWS flow reduction.
7/20/2015	NC	NC		Average 1,525	EWS operational mode was switched from flow control to level control
8/5/2015	NC	900 to 850	NC		Air entrainment in EWM flow reduction.
8/14/2015	400 to 375	NC	NC		Air entrainment in EWN flow reduction.
11/10/2015	375 to 350	NC		•	Air entrainment in EWN flow reduction.
1/8/2016	350 to 0	850 to 0	Average 206 gpm to 0	0	Annual SRP Grand Canal Maintenance Shutdown.
2/8/2016	Average 445	0 to 1,100	Average 225	Average 1,770	Restart after Annual SRP Grand Canal Maintenance Shutdown. EWN operational mode was switched from flow control to level control
2/11/2016	NC	1,100 to 1,000	NC	Average 1,670	Air entrainment in EWM flow reduction.
2/16/2016	Average 396	1,000 to 900	NC	Average 1,521	Air entrainment in EWM flow reduction.
2/17/2016	NC	900 to 850	NC	Average 1,471	Air entrainment in EWM flow reduction.
2/23/2016	NC	850 to 800	NC	Average 1,421	Air entrainment in EWM flow reduction.
3/31/2016	Average 336	NC	Average 204	Average 1,390	Flow reductions due to decrease in groundwater levels
4/1/2016	Average 298	NC	Average 197	Average 1,295	Flow reductions due to decrease in groundwater levels
4/13/2016	NC	800 to 775	NC	Average 1,270	Flow reductions due to decrease in groundwater levels
5/1/2016	Average 294	NC	Average 190	Average 1,259	Flow reductions due to decrease in groundwater levels
6/1/2016	Average 285	NC	Average 179	Average 1,239	Flow reductions due to decrease in groundwater levels
7/1/2016	Average 301	NC	Average 175	Average 1,251	Flow reductions due to decrease in groundwater levels
8/1/2016	Average 303	NC	Average 174	Average 1,252	Flow reductions due to decrease in groundwater levels
9/1/2016	Average 315	NC	Average 170	Average 1,257	Flow reductions due to decrease in groundwater levels
9/6/2016	NC	775 to 725	NC	Average 1,210	Flow reductions due to decrease in groundwater levels
10/1/2016	Average 311	NC	NC	Average 1,206	Flow reductions due to decrease in groundwater levels
11/1/2016	Average 314	NC	Average 160	Average 1,199	Flow reductions due to decrease in groundwater levels
11/11/2016	NC	725 to 700	NC	Average 1,174	Flow reductions due to decrease in groundwater levels
12/1/2016	NC	NC	Average 154	Average 1,168	Flow reductions due to decrease in groundwater levels
1/5/2017	Average of 380 to 0	700 to 0	Average of 150 to 0	Average 1,230	Annual SRP Grand Canal Maintenance Shutdown.
2/6/2017	Average of 0 to 425	0 to 800	Average of 0 to 275	Average 1,500	Restart after Annual SRP Grand Canal Maintenance Shutdown.
2/10/2017	Average of 0 to 425	800 to 0	Average of 275 to 0	Average 1,500	SRP-mandated shutdown due to water releases from the Roosevelt Reservoir.
3/18/2017	Average of 0 to 430	0 to 760	Average of 0 to 285	Average 1,475	Restart after end of SRP-mandated shutdown.
4/13/2017	Average of 425 to 0	690 to 0	Average of 270 to 0	Average 1,385	Shut down system due to utility strike of effluent line in the vicinity of 24th Street and Roosevelt Street.
4/21/2017	Average of 0 to 440	0 to 680	Average of 0 to 285	Average 1,405	Restart after repair of effluent line.
5/1/2017	Average 445	750 to 710	Average 275	Average 1,441	Flow reductions due to decrease in groundwater levels
6/1/2017	Average 435	NC	Average 260	Average 1,414	Flow reductions due to decrease in groundwater levels
7/1/2017	Average 430	NC	Average 250	Average 1,407	Flow reductions due to decrease in groundwater levels
8/1/2017	Average 420	NC	· ·	•	Flow reductions due to decrease in groundwater levels
GHD 013932 (41)	J ·		J	<u>-</u>	•

Table 4.4

Summary of Extraction Well Flow Rate Set Point Changes 52nd Street Superfund Site, OU2 Area Phoenix, Arizona

	Extractio	n Well Pumpi	ing Rates	_	
Date of	EWN	EWM	EWS	Total	
Flow Change	(gpm)	(gpm)	(gpm)	(gpm)	Comments
8/5/2017	420 to 0	NC	NC	Average 992	EWN offline after controls overheated due to a failed compressor in the control building's HVAC system.
8/16/2017	0 to 445	NC	Average 250	Average 1,425	EWN back online after repair of HVAC system.
9/1/2017	Average 420	710 to 700	NC	Average 1,371	Flow reductions due to decrease in groundwater levels
10/1/2017	Average 410	700 to 675	Average 240	Average 1,333	Flow reductions due to decrease in groundwater levels
10/24/2017	Average 345	NC	NC	Average 1,259	Reduce extraction from EWN to observe potential influence on EWM.
11/21/2017	Average 370	NC	Average 230	Average 1,280	Resume maximum rate at EWN due to lack of observed influence on EWM. Flow reductions due to decrease in groundwater levels.
12/1/2017	Average 365	NC	Average 215	Average 1,257	Flow reductions due to decrease in groundwater levels.

Notes:

gpm - gallons per minute

SRP - Salt River Project

GAC - granular activated carbon

NC - no change

TCE - Trichloroethylene

VSD - variable speed drive

HVAC - heating/ventilation/air conditioning

Entrained air collecting in the extraction wells, and subsequently in the carbon of the primary GAC adsorbers, can cause the GAC to become "blinded" by the air. This issue has been discussed in previous annual effectiveness reports, and had not been as significant a problem prior to 2012. However, throughout 2012, 2013, 2014, 2015, and 2016 the drop in regional groundwater elevations, resulting from the lack of groundwater recharge from the Salt River, has contributed to entrainment of air at the OU2 Groundwater Extraction System (GES) extraction wells. Despite the recent air entrainment in the extraction wells, the groundwater extraction and treatment system has sufficient capacity and flexibility to extract and treat the necessary amount of groundwater to maintain groundwater containment, as outlined in Section 3.3 of the 2017 Effectiveness Report.

Table 4.5 **Summary of Combined Influent Analytical Results** VOCs 52nd Street Superfund Site, OU2 Area Phoenix, Arizona

	Treated Groundwater	Frequency: Date:	Monthly 1/4/2017	Monthly 2/7/2017	Monthly 3/20/2017	Monthly 4/5/2017	Monthly 5/15/2017	Monthly 6/1/2017	Monthly 7/6/2017	Monthly 8/2/2017	Monthly 9/5/2017	Monthly 10/3/2017	Monthly 11/1/2017	Monthly 12/4/2017
	Discharge													2PS-120417-01
	Standards	Status:	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final
Volatile Organic Compou	nds (VOCs) (µg/	'L)												
Benzene	5		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Bromodichloromethane	TTHM		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Bromomethane	TTHM		ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)
Chloroform	TTHM		1.8	1.8	2.1	2	2.1	2.3	2.1	1.9	1.9	2.1	2.1	1.8
Chloromethane	NNS		ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)
1,1-Dichloroethane	NNS		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,2-Dichloroethane	5		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,1-Dichloroethene	7		1.4	1.5	1.5	1.3	1.9	1.7	1.3	1.6	ND(1.0)	1.2	1.3	1.2
cis-1,2-Dichloroethene	70		5.6	5.7	5.7	6.5	5.9	7.1	6	6.8	5.5	6.3	6.1	5.5
trans-1,2-Dichloroethene	100		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Tetrachloroethene	5		1.8	2	2.3	2	1.5	2.1	2.2	2.1	2	1.8	2.1	1.7
Toluene	1,000		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,1,1-Trichloroethane	200		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Trichloroethene	5		30.9	32.2	35.3	36	30.3	33.4	34.4	33.3	29.5	33	30.3	27.7
Trichlorofluoromethane	TTHM		ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)
Vinyl Chloride	2		ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
Xylene	10,000		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Field Parameters														
pH (s.u.)			7.1	7.05	7.06	6.85	7.05	6.94	7.18	7.14	7.16	7.1	7.01	7.05
Conductivity (µS/cm)			2,083	2,090	2,085	2,015	2,104	2,086	2,032	2,060	2,064	1,998	2,074	2,091
Temperature (°F)			75.8	76.5	77.7	72.2	77.7	78.1	78.9	79.3	78.0	77.7	77.1	76.7
System Status (X indicate	es operational)													
EWN	-		X	X	X	X	X	X	X	X	X	X	X	X
EWM			X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
EWS			X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
Ultraviolet oxidation system	with H ₂ O ₂													-

Ultraviolet oxidation system with H₂O₂

Ultraviolet oxidation system without H₂O₂

Notes:

Status - Final - data validated by project chemist

μg/L - micrograms per liter

ND() - Not Detected at the reporting limit in parenthesis

TTHM - Total Trihalomethanes = 100 µg/L

NNS - No numeric standard

s.u. - standard units

 $\mu S/cm$ - microsiemens per centimeter

°F - degrees Fahrenheit

H₂O₂ - hydrogen peroxide

Table 4.6

Summary of Combined Influent Analytical Results Metals and General Chemistry 52nd Street Superfund Site, OU2 Area Phoenix, Arizona

		Sample Location:	Combined Influent
	Treated	Frequency:	Annually
	Groundwater	Date:	9/5/2017
	Discharge	Number:	PS-090517-01
	Standards	Status:	Final
Total Recoverable Metals (mg/L)			
Arsenic	0.01		NS
Calcium	NNS		92.6
Magnesium	NNS		34.9
General Chemistry (mg/L)			
Alkalinity as CaCO ₃	NNS		248
Bicarbonate Alkalinity as CaCO ₃	NNS		2480
Total Dissolved Solids	NNS		1270
Hardness, Dissolved (CaCO ₃)	NNS		375
Field Parameters			
pH (s.u.)			7.16
Conductivity (µS/cm)			2,064
Temperature (°F)			78.0
System Status (X indicates operational)			
EWN			Χ
EWM			X
EWS			X
Ultraviolet oxidation system with H ₂ O ₂			
Ultraviolet oxidation system without H ₂ O ₂			

Notes:

mg/L - milligrams per liter

ND() - Not Detected at the reporting limit in parenthesis

NNS - No numeric standard

NS - Not Sampled

CaCO₃ - Calcium Carbonate

s.u. - standard units

µS/cm - microsiemens per centimeter

°F - degrees Fahrenheit

H₂O₂ - Hydrogen Peroxide

Status - Final - data validated by project chemist

Table 4.7

Summary of Analytical Results Facility Discharge 52nd Street Superfund Site, OU2 Area Phoenix, Arizona

					i noonix,	741 20 114							
	Treated Frequency Groundwater Date	Monthly 1/4/2017	Monthly* 1/4/2017	Monthly 2/7/2017	Monthly* 2/7/2017	Monthly 3/20/2017	Monthly* 3/20/2017	Monthly 4/5/2017	Monthly* 4/5/2017	Monthly 5/15/2017	Monthly* 5/15/2017	Monthly 6/1/2017	Monthly* 6/1/2017
	Discharge Number		6PS-010417-07										
	Standards Status	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final
Volatile Organic Compoun	ds (VOCs) (μg/L)												
Benzene	5	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Bromodichloromethane	TTHM	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Bromomethane	TTHM	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)
Chloroform	TTHM	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	1.1	1.2	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Chloromethane	NNS	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)
1,1-Dichloroethane	NNS	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,2-Dichloroethane	5	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,1-Dichloroethene	7	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
cis-1,2-Dichloroethene	70	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	1.2	1.3	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
trans-1,2-Dichloroethene	100	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Tetrachloroethene	5	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Toluene	1,000	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,1,1-Trichloroethane	200	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Trichloroethene	5	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
Trichlorofluoromethane	TTHM	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)
Vinyl Chloride	2	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
Xylene	10,000	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
	Total Discharge VOCs	0.0	0.0	0.0	0.0	0.0	0.0	2.3	2.5	0.0	0.0	0.0	0.0
Field Parameters													
pH (s.u.)		6.94	6.94	7.13	7.13	6.96	6.96	7.06	7.06	7.15	7.15	7.1	7.1
Conductivity (µS/cm)		2,100	2,100	2,092	2,092	2,200	2,200	2,104	2,104	2,099	2,099	2,061	2,061
Temperature (°F)		76.0	76.0	76.9	76.9	78.9	78.9	78.1	78.1	77.2	77.2	79.5	79.5
System Status (X indicates	operational)												
EWN		X	X	Χ	X	Χ	X	Χ	X	X	X	Χ	Χ
EWM		Χ	Χ	Χ	Χ	Χ	Χ	X	Χ	Χ	Χ	Χ	X
EWS		Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	X
Ultraviolet oxidation system	with H ₂ O ₂												
Ultraviolet oxidation system	without H ₂ O ₂												

Table 4.7

Summary of Analytical Results Facility Discharge 52nd Street Superfund Site, OU2 Area Phoenix, Arizona

	Treated Frequency	Monthly	Monthly*	Monthly	Monthly*	Monthly	Monthly*	Monthly	Monthly*	Monthly	Monthly*	Monthly	Monthly*
	Groundwater Date	7/6/2017	7/6/2017	8/2/2017	8/2/2017	9/5/2017	9/5/2017	10/3/2017	10/3/2017	11/1/2017	11/1/2017	12/4/2017	12/4/2017
	Discharge Number	PS-070617-06	6PS-070617-07	PS-080217-07	PS-080217-08	PS-090517-06	6PS-090517-07	PS-100317-06	PS-100317-07	PS-110117-07	PS-110117-08	3PS-120417-06	PS-120417-07
	Standards Status	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final
Volatile Organic Compoun	ds (VOCs) (μg/L)												
Benzene	5	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Bromodichloromethane	TTHM	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Bromomethane	TTHM	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)
Chloroform	TTHM	2.2	2.2	3.0	3.0	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	2.6	2.6	ND(1.0)	ND(1.0)
Chloromethane	NNS	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)
1,1-Dichloroethane	NNS	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,2-Dichloroethane	5	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,1-Dichloroethene	7	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
cis-1,2-Dichloroethene	70	1.2	1.2	5.3	5.4	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	3.2	3.2	ND(1.0)	ND(1.0)
trans-1,2-Dichloroethene	100	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Tetrachloroethene	5	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Toluene	1,000	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,1,1-Trichloroethane	200	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Trichloroethene	5	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
Trichlorofluoromethane	TTHM	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)
Vinyl Chloride	2	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
Xylene	10,000	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
	Total Discharge VOCs	3.4	3.4	8.3	8.4	0.0	0.0	0.0	0.0	5.8	5.8	0.0	0.0
Field Parameters													
pH (s.u.)		7.04	7.04	7.08	7.08	6.97	6.97	6.92	6.92	6.94	6.94	7.12	7.12
Conductivity (µS/cm)		2,048	2,048	2,069	2,069	2,074	2,074	2,010	2,010	2,052	2,052	2,085	2,085
Temperature (°F)		79.8	79.8	79.3	79.3	79.6	79.6	77.3	77.3	77.7	77.7	76.8	76.8
System Status (X indicates	s operational)												
EWN		Χ	Χ	Χ	X	Χ	X	Χ	Χ	Χ	Χ	Χ	X
EWM		Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
EWS		Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	X
Ultraviolet oxidation system													
Ultraviolet oxidation system	without H ₂ O ₂												

Notes:

* indicates a duplicate sample

μg/L - micrograms per liter

ND() - Not Detected at the reporting limit in parentheses

TTHM - Total Trihalomethanes = 100 mg/L

NNS - No numeric standard

s.u. - standard units

μS/cm - microsiemens per centimeter

°F - degrees Fahrenheit

J - Estimated concentration.

Status - Final - data validated by project chemist

H₂O₂ - Hydrogen peroxide

Table 4.8

Summary of Analytical Results SRP Grand Canal Discharge 52nd Street Superfund Site, OU2 Area Phoenix, Arizona

	Treated Groundwater Discharge Standards	Frequency: Date: Number: Status:	Annually 9/5/2017 PS-090517-11 Final
Volatile Organic Compounds (VOCs) (μg/L)			
Benzene	5		ND(1.0)
Bromodichloromethane	TTHM		ND(1.0)
Bromomethane	TTHM		ND(2.0)
Chloroform	TTHM		ND(1.0)
Chloromethane	NNS		ND(2.0)
1,1-Dichloroethane	NNS		ND(1.0)
1,2-Dichloroethane	5		ND(1.0)
1,1-Dichloroethene	7		ND(1.0)
cis-1,2-Dichloroethene	70		ND(1.0)
trans-1,2-Dichloroethene	100		ND(1.0)
Tetrachloroethene	5		ND(1.0)
Toluene	1,000		ND(1.0)
1,1,1-Trichloroethane	200		ND(1.0)
Trichloroethene	5		ND(0.50)
Trichlorofluoromethane	TTHM		ND(4.0)
Vinyl Chloride	2		ND(0.50)
Xylene	10,000		ND(1.0)
Field Parameters			
pH (s.u.)			7.09
Conductivity (µS/cm)			2,074
Temperature (°F)			79.9
System Status (X indicates operational)			
EWN			X
EWM			X
EWS			X
Ultraviolet oxidation system with H ₂ O ₂			
Ultraviolet oxidation system without H ₂ O ₂			

Notes:

Status - Final - data validated by project chemist

μg/L - micrograms per liter

ND() - Not Detected at the reporting limit in parenthesis

TTHM - Total Trihalomethanes = 100 mg/L

NNS - No numeric standard

s.u. - standard units

 $\mu S/cm$ - microsiemens per centimeter

°F - degrees Fahrenheit H₂O₂ - Hydrogen peroxide

GHD 013932 (41)

Table 4.9

Summary of Metals Analytical Results SRP Grand Canal Discharge 52nd Street Superfund Site, OU2 Area Phoenix, Arizona

	Surface Water Quality Standards ¹	Frequency: Date: Number: Status:	Annually 9/5/2017 PS-090517-15 Final
Total Recoverable Metals (mg/L)			
Arsenic	2		ND(0.008)
Barium	NNS		0.0511
Boron	1		1.99
Cadmium	0.05		ND(0.004)
Calcium	NNS		97.7
Copper	5		ND(0.004)
Iron	NNS		ND(0.2)
Lead	10		ND(0.002)
Magnesium	NNS		36.4
Mercury	NNS		ND(0.0002)
Potassium	NNS		6.45
Selenium	0.02		ND(0.01)
Sodium	NNS		279
Zinc	10		ND(0.012)
Field Parameters			
pH (s.u.)			7.09
Conductivity (µS/cm)			2,074
Temperature (°F)			79.9
System Status (X indicates operational)			
EWN			X
EWM			X
EWS			Χ

Notes:

Status - Final - data validated by project chemist

mg/L - milligrams per liter

ND() - Not Detected at the reporting limit in parentheses

NNS - No numeric standard

s.u. - standard units

 $\mu S/cm$ - microsiemens per centimeter

°F - degrees Fahrenheit

GHD 013932 (41)

¹ Water Quality Standards for Surface Waters are per Title 18, Ch. 11, Section 101 et. seq. of the Arizona Administrative Code for agricultural irrigation uses (SRP Grand Canal designation)

Table 4.10

Summary of General Chemistry Analytical Results SRP Grand Canal Discharge 52nd Street Superfund Site, OU2 Area Phoenix, Arizona

	Surface Water Quality Standards ¹	Frequency: Date: Number: Status:	Annually 9/5/2017 PS-090517-15 Final
General Chemistry (mg/L)			
Alkalinity, Bicarbonate	NNS		215
Alkalinity, as CaCO ₃	NNS		215
Chloride	NNS		319
Fluoride	NNS		0.61
Nitrate (as N)	NNS		6.4
Nitrite (as N)	NNS		ND(0.5)
Orthophosphate	NNS		0.081
Sulfate	NNS		266
Total Dissolved Solids (TDS)	NNS		1,270
Hardness, Carbonate	NNS		394
Field Parameters			
pH (s.u.)			7.09
Conductivity (µS/cm)			2,074
Temperature (°F)			79.9
System Status (X indicates operational)			
EWN			X
EWM			X
EWS			Χ

Notes:

Status - Final - data validated by project chemist

mg/L - milligrams per liter

NNS - No numeric standard

ND() - Not Detected at the detection limit in parenthesis

CaCO₃ - Calcium Carbonate

s.u. - standard units

μS/cm - microsiemens per centimeter

°F - degrees Fahrenheit

¹ Water Quality Standards for Surface Waters are per Title 18, Ch. 11, Section 101 et. seq. of the Arizona Administrative Code for agricultural irrigation uses (SRP Grand Canal designation)

Table 4.11

Summary of Boron Analytical Results
SRP Discharge and Grand Canal
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

	Sample Location:		SRP Dis	scharge	•	gradient n Discharge	SRP Downgradient 800 feet from Discharge	
	Surface Water Quality Standards ¹	Frequency: Date: Number: Status"	Semi-annual 3/20/2017 PS-032017-12 Final	Semi-annual 9/5/2017 PS-090517-15 Final	Semi-annual 3/20/2017 PS-032017-11 Final	Semi-annual 9/5/2017 PS-090517-16 Final	Semi-annual 3/20/2017 PS-032017-14 Final	Semi-annual 9/5/2017 PS-090517-17 Final
Total Recoverable Meta	ls (mg/L)							
Boron	1		2.49	1.99	0.12	0.12	0.38	0.22
Field Parameters								
pH (s.u.)			7.19	7.09	8.41	8.38	8.06	8.15
Conductivity (µS/cm)			2,132	2,074	459	1,337	650	1,384
Temperature (°F)			77.2	79.9	69.0	82.9	70.0	83.2
System Status (X indica	ites operational)							
EWN			X	X	X	X	X	Χ
EWM			Х	X	X	X	X	X
EWS			Χ	Χ	Х	Χ	Х	X

Notes:

Status - Final - data validated by project chemist

mg/L - milligrams per liter

s.u. - standard units

 $\mu S/cm$ - microsiemens per centimeter

^oF - degrees Fahrenheit GHD 013932 (41)

¹ Water Quality Standards for Surface Waters are per Title 18, Ch. 11, Section 101 et. seq. of the Arizona Administrative Code for agricultural irrigation uses (SRP Grand Canal designation)

	Sam	ple Location:		GAC Ve	essel #2					GAC V	essel #4			
	Treated	Frequency:	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly
	Groundwater	Date:		10/3/2017	11/1/2017	12/4/2017	1/4/2017	2/7/2017	3/20/2017	4/5/2017	5/15/2017	6/1/2017	7/6/2017	8/2/2017
	Discharge	Number:				PS-120417-02								
	Standards	Status:	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final
Volatile Organic Compo	unds (VOCs) (μο	_J /L)												
Benzene	5		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Bromodichloromethane	TTHM		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Bromomethane	TTHM		ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)
Chloroform	TTHM		3.4	3.4	2.8	3.1	4.7	5.1	5.5	3.9	4.1	4.7	3.3	2.4
Chloromethane	NNS		ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)
1,1-Dichloroethane	NNS		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	1.5	1.6	1.5	ND(1.0)	1.2	1.0	ND(1.0)	ND(1.0)
1,2-Dichloroethane	5		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,1-Dichloroethene	7		ND(1.0)	ND(1.0)	1.3	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	1.1	1.4
cis-1,2-Dichloroethene	70		7.7	9.3	8.8	6.7	4.9	6.8	8.7	9.2	2.8	6.2	8.4	8.5
trans-1,2-Dichloroethene	100		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Tetrachloroethene	5		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Toluene	1,000		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,1,1-Trichloroethane	200		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Trichloroethene	5		0.63	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	0.81	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
Trichlorofluoromethane	TTHM		ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)
Vinyl Chloride	2		ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
Xylene	10,000		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
		Total VOCs	11.7	12.7	12.9	9.8	11.1	14.3	15.7	13.1	8.1	11.9	12.8	12.3
Field Parameters														
pH (s.u.)			7.11	7.04	7	7.11	6.90	7.06	7.14	7.08	7.10	7.14	7.11	7.11
Conductivity (µS/cm)			2,051	2,010	2,060	2,080	2,059	2,105	2,142	2,096	2,086	2,057	2,075	2,065
Temperature (°F)			78.3	77.7	77.3	76.5	75.4	76.6	77.8	76.9	76.9	77.8	78.7	78.7
System Status (X indicat	es operational)													
Primary Adsorber	,		Α	Α	Α	В	Α	Α	Α	Α	В	В	В	В
EWN			X	X	Х	X	X	X	Χ	X	X	X	X	X
EWM			Х	Х	Х	X	X	Х	Χ	Х	Х	Х	Х	X
EWS			Х	Х	Х	X	X	Х	Χ	Х	Х	Х	Х	X
Ultraviolet oxidation syster	n with H ₂ O ₂													
Ultraviolet oxidation syster	n without H ₂ O ₂													

Treated Frequenc Groundwater Da	y: Monthly											
Groundwater Da	y. Wolliny	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly
Giodiidwatei Da	e: 1/4/2017	2/7/2017	3/20/2017	4/5/2017	5/15/2017	6/1/2017	7/6/2017	8/2/2017	9/5/2017	10/3/2017	11/1/2017	12/4/2017
Discharge Number	er: PS-010417-0	3 PS-020717-04	PS-32017-03	PS-040517-03	3PS-051517-04	PS-060117-03	3PS-070617-03	PS-080217-04	4PS-090517-03	PS-100317-03	PS-110117-04	PS-120417-03
Standards Statu	s: Final	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final
Volatile Organic Compounds (VOCs) (μg/L)												
Benzene 5	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Bromodichloromethane TTHM	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Bromomethane TTHM	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)
Chloroform TTHM	4.8	4.5	3.8	4.0	3.4	3.8	3.6	3	3.8	3.5	3.1	3.4
Chloromethane NNS	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)
1,1-Dichloroethane NNS	1.3	1.3	ND(1.0)	ND(1.0)	1.2	1.1	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,2-Dichloroethane 5	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,1-Dichloroethene 7	ND(1.0)	ND(1.0)	1.8	1.2	ND(1.0)	ND(1.0)	1	1.4	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
cis-1,2-Dichloroethene 70	13.0	12.9	12.9	13.7	1.9	4.6	11.3	12.2	5.1	10.1	10.3	1.9
trans-1,2-Dichloroethene 100	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Tetrachloroethene 5	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Toluene 1,000	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,1,1-Trichloroethane 200	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Trichloroethene 5	ND(0.50)	ND(0.50)	0.57	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
Trichlorofluoromethane TTHM	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)
Vinyl Chloride 2	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
Xylene 10,000	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Total VOC	s 19.1	18.7	19.1	18.9	6.5	9.5	15.9	16.6	8.9	13.6	13.4	5.3
Field Parameters												
pH (s.u.)	7.00	7.04	7.18	7.15	7.12	7.37	7.1	7.12	6.58	6.96	7.05	7.06
Conductivity (µS/cm)	2,118	2,099	2,118	2,102	2,091	2,071	2,065	2,068	2,009	2,003	2,048	2,077
Temperature (°F)	75.8	76.6	77.6	76.8	76.7	77.7	78.7	78.9	78.5	77.4	77.5	76.7
System Status (X indicates operational)												
Primary Adsorber	А	Α	Α	Α	В	В	В	В	Α	Α	Α	В
EWN	X	X	X	X	X	X	X	X	X	X	X	X
EWM	X	X	X	X	X	X	X	Х	X	X	X	X
EWS	X	X	X	X	X	X	X	X	X	X	X	X
Ultraviolet oxidation system with H ₂ O ₂												
Ultraviolet oxidation system without H ₂ O ₂												

	Sam	ple Location:						GAC V	essel #6					
	Treated Groundwater	Frequency: Date:	Monthly 1/4/2017	Monthly 2/7/2017	Monthly 3/20/2017	Monthly 4/5/2017	Monthly 5/15/2017	Monthly 6/1/2017	Monthly 7/6/2017	Monthly 8/2/2017	Monthly 9/5/2017	Monthly 10/3/2017	Monthly 11/1/2017	Monthly 12/4/2017
	Discharge						4PS-051517-05							
	Standards	Status:	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final
Volatile Organic Compou	unds (VOCs) (uc	1/L)												
Benzene	5	, ,	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Bromodichloromethane	TTHM		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Bromomethane	TTHM		ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)
Chloroform	TTHM		3.6	3.5	3.9	2.8	3.2	3.6	2.4	2.3	2.5	2.7	2.5	2.9
Chloromethane	NNS		ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)
1,1-Dichloroethane	NNS		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,2-Dichloroethane	5		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,1-Dichloroethene	7		2.0	1.8	1.9	1.8	1.1	1.7	1.7	2.1	1.6	2.3	2	1.8
cis-1,2-Dichloroethene	70		12.1	12.9	12.4	11.5	8.9	11.9	8	8.9	9.9	11	8.9	10.7
trans-1,2-Dichloroethene	100		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Tetrachloroethene	5		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Toluene	1,000		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,1,1-Trichloroethane	200		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Trichloroethene	5		0.85	0.99	0.56	2.0 J	ND(0.50)	ND(0.50)	5	8.8	ND(0.50)	ND(0.50)	6.8	ND(0.50)
Trichlorofluoromethane	TTHM		ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)
Vinyl Chloride	2		ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
Xylene	10,000		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
		Total VOCs	18.6	19.2	18.8	18.1	13.2	17.2	17.1	22.1	14.0	16.0	20.2	15.4
Field Parameters														
pH (s.u.)			7.09	7.05	7.11	7.19	7.08	7.17	7.06	7.15	7.07	7.06	7.04	7.07
Conductivity (µS/cm)			2,098	2,116	2,110	2,100	2,083	2,080	2,062	2,076	2,057	2,008	2,082	2,070
Temperature (°F)			74.6	76.5	77.5	76.6	76.8	77.8	77.8	78.9	78.3	77.6	77.5	76.5
System Status (X indicat	es operational)													
Primary Adsorber			Α	Α	Α	Α	В	В	В	В	Α	Α	Α	В
EWN			Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Χ
EWM			Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Χ
EWS			Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	X
Ultraviolet oxidation system	n with H ₂ O ₂													
Ultraviolet oxidation system	n without H ₂ O ₂													

	Sample Location: GAC Vessel #7						GAC Vessel #8							
	Treated	Frequency:	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly
	Groundwater	Date:	9/5/2017	10/3/2017	11/1/2017	12/4/2017	1/4/2017	2/7/2017	3/20/2017	4/5/2017	5/15/2017	6/1/2017	7/6/2017	8/2/2017
	Discharge					PS-120417-05								
	Standards	Status:	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final
Volatile Organic Compou	nds (VOCs) (µg	J/L)												
Benzene	5		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Bromodichloromethane	TTHM		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Bromomethane	TTHM		ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)
Chloroform	TTHM		3.4	3.5	2.7	3.7	4.4	4.2	4.7	3.8	3.3	5.0	3.7	3.1
Chloromethane	NNS		ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)
1,1-Dichloroethane	NNS		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	1.4	1.4	1.5	1.1	1.1	1.1	ND(1.0)	ND(1.0)
1,2-Dichloroethane	5		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,1-Dichloroethene	7		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	1.2
cis-1,2-Dichloroethene	70		5.8	6.9	6.5	6.5	3.7	3.6	6.8	6.7	1.3	4.2	7.1	9.5
trans-1,2-Dichloroethene	100		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Tetrachloroethene	5		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Toluene	1,000		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,1,1-Trichloroethane	200		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Trichloroethene	5		ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	0.69 J	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
Trichlorofluoromethane	TTHM		ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)
Vinyl Chloride	2		ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
Xylene	10,000		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
		-												
		Total VOCs	9.2	10.4	9.2	10.2	9.5	9.2	13.0	12.3	5.7	10.3	10.8	13.8
Field Parameters														
pH (s.u.)			7.14	7.00	7.03	7.08	7.11	7.04	6.96	7.15	7.12	7.14	7.09	7.12
Conductivity (µS/cm)			2,052	2,005	2,074	2,064	2,112	2,118	2,200	2,101	2,085	2,073	2,059	2,074
Temperature (°F)			78.4	77.4	77.5	76.7	75.5	76.3	78.9	76.8	76.8	78.0	78.8	79.1
System Status (X indicate	es operational)													
Primary Adsorber			Α	Α	Α	В	Α	Α	Α	Α	В	В	В	В
EWN			X	X	X	X	X	X	X	Х	X	X	X	X
EWM			Χ	Х	X	Х	X	Х	Х	Х	Х	Х	Х	X
EWS			Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	X
Ultraviolet oxidation system	with H ₂ O ₂													
Ultraviolet oxidation system	without H ₂ O ₂													

Notes:

Status - Final - data validated by project chemist

μg/L - micrograms per liter

ND() - Not Detected at the reporting limit in parenthesis TTHM - Total Trihalomethanes = $100 \ \mu g/L$

NNS - No numeric standard

s.u. - standard units

μS/cm - microsiemens per centimeter

°F - degrees Fahrenheit

H₂O₂ - hydrogen peroxide

J - Sample results were qualified as estimated due to outlying of surrogate recove

Table 4.13

Summary of GAC Changeout Dates 52nd Street Superfund Site, OU2 Area Phoenix, Arizona

Ship Date	GAC # ¹	Replacement Quantity (pounds) Regenerated
First Changeout 2017 (4 Sets in Service	ce)	
May 5, 2017	4A	18,000
May 8, 2017	5A	18,000
May 10, 2017	6A	18,000
May 12, 2017	8A	18,000
Total		72,000
Second Changeout 2017 (4 Sets in Se	rvice)	
August 18, 2017	4B ²	18,000
August 21, 2017	5B	18,000
August 23, 2017	6B	18,000
August 25, 2017	8B ²	18,000
Total		72,000
Third Changeout 2017 (4 Sets in Servi	ce)	
November 23, 2017	2A	18,000
November 27, 2017	5A	18,000
November 29, 2017	6A	18,000
December 1, 2017	7A	18,000
Total		72,000

Notes:

GAC - Granular Activated Carbon

¹ These GAC vessels become secondary GAC vessels after carbon changeout

² Carbon from GAC Vessels #4A, #4B, #8A, and #8B was transferred to GAC Vessels #2A, #2B, #7A, and #7B, respectively, in August 2017 to prepare for internal lining repairs.

Table 4.14

Summary of Analytical Results Discharge to the City of Phoenix Sewer 52nd Street Superfund Site, OU2 Area Phoenix, Arizona

		City of Phoenix	:	Quarterly	Quarterly	Quarterly	Quarterly
		Discharge	Date:	2/7/2017	5/15/2017	8/2/2017	11/1/2017
Parameter ¹	Units	Limitations	Number:	PS-020717-01	PS-051517-01	PS-080217-01	PS-110117-01
рН	s.u.	5.0 - 10.5		8.85	8.16	7.39	8.05
Benzene	μg/L	35		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Chloroform	μg/L	2,000		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Tetrachloroethene	μg/L	NA		ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Trichloroethene	μg/L	NA		ND(1.0)	ND(1.0)	3.8	1.7

Notes:

s.u. - standard units

μg/L - micrograms per liter

ND() - Not Detected at the reporting limit in parentheses

NA - Not applicable

¹ As required by the Industrial Wastewater Discharge Permit

Table 7.1

Proposed OU2 GES Area Groundwater Monitoring Well Sampling Frequencies - 2018
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

Well ID Monitoring Wells Piezometers	Construction Type	Location	Hydro- stratigraphic Subunit Screened	Curr Monit	oring	Proposed Frequency (2018) Water	Comments
				Hydraulio	Quality	Quality	
BC-16	С	32nd Street and Washington Street	SRG	Z	Υ	Υ	
CRA01	С	I-10 and Roosevelt Street	SRG	Z	Z	Z	
DM509	С	N 30th Place and E Van Buren	BF	Z	Υ	Υ	
EW03	С	N 30th Place and E Van Buren	SRG/BF	Z	Z	Υ	
EW06	С	20th Street and Madison Street	SRG	Z	Z	Z	
EW07	С	20th Street and Fillmore Street	SRG	Z	Z	Z	
EW19-D	С	12th Street and Monroe Street	BF	Z	Z		Sampled by OU3 contractor.
EW19-S	С	12th Street and Monroe Street	SRG	Z	Z		Went dry in 2015
EW21	С	12th Street and Fillmore Street	SRG	Z			Went dry in 2015
EW22-D	С	15th Street and Polk Street	BF	Z	Υ	Υ	No historic VOC detects
EW22-S	С	19th Street, between Adams and Washington Streets	SRG	Z	Υ	Υ	Sufficient data to establish trend
EWM	E	Van Buren, east of 20th Street, on ADOT ROW	SRG/BF	Z	Z	Z	Sufficient data to establish trend
EWN	E	ADOT ROW	SRG/BF	Z	Z	Z	Sufficient data to establish trend
EWS	E	20th Street north of Washington Street	SRG/BF/BR	Z	Z	Z	Sufficient data to establish trend
EWSPZ1	С	20th Street north of Washington Street	SRG/BF	Z			Screened across multiple units
NW01	С	24th Street and Roosevelt Street	SRG	Z	Z	Z	Ocator of alcordance and a NIMOS O
NW02	С	Polk Street, between 19th and 20th Streets	SRG	Z Z	Y	Y	Center of plume, proximal to NW05-S
NW03	С	Monroe Street, between 19th and 20th Streets	SRG	Z	Z Z	Z Z	
NW04-S	C C	Patricio, between Polk and Van Buren	SRG BF	Z Z	Z	Z	
NW04-D	C	Patricio, between Polk and Van Buren	SRG	Z	Z	Z	
NW05-S NW06-S	C	19th Street, between Van Buren and Polk 19th Street, between Adams and Washington Streets	SRG	Z	Z	Z	Center of plume, upgradient of capture
NW06-D	C	19th Street, between Adams and Washington Streets	BF	Z	Z	Z	Center of plume, upgradient of capture
NW07-S	C	18th Street, between Madison and Jefferson Streets	SRG	Z	Z	Z	Center of plume, appradient of capture
NW07-3	C	18th Street, between Madison and Jefferson Streets	SRG	Z	Z	Z	
NW07-D	C	18th Street, between Madison and Jefferson Streets	BF	Z	Z	Z	
NW08-S	C	20th Street and Adams Street	SRG	Z	Y	Y	Center of plume, upgradient of the GES
NW08-M	C	20th Street and Adams Street	BF	Z	Ϋ́	Ϋ́	Center of plume, upgradient of the GES
NW08-D	C	20th Street and Adams Street	BF	Z	Ϋ́	Ϋ́	Center of plume, upgradient of the GES
NW09-M	Č	20th Street, south of UPRR track	SRG	Z	Z	Ϋ́	Outside plume boundary
NW09-D	C	20th Street, south of UPRR track	BF	Z	Z	Z	
NW09-D2	C	20th Street, south of UPRR track	BF	Z	Z	Z	Outside plume boundary
NW10-D	С	Sky Harbor Circle and 20th Street	BF	Z	Υ	Υ	Outside plume boundary
NW11-M	С	20th Street and Madison Street	SRG	Z	Z	Z	
NW11-D	С	20th Street and Madison Street	BF	Z	Z	Z	
NW12-D	С	Villa Street and 20th Street	BF	Z	Υ	Υ	Outside plume boundary
NW13-M	N	South of UPRR track and west of 19th Street	SRG	Z	Z	Υ	Outside plume boundary
NW13-D	N	South of UPRR track and west of 19th Street	BF	Z	Z	Z	
NW14-M	N	19th Street and Jackson Street	SRG	Z	Z	Υ	Outside plume boundary
NW14-D	N	19th Street and Jackson Street	BF	Z	Z	Z	
NW15-S	С	Jackson Street east of 22nd Street	Colluvium	Z	Z	Υ	
NW16-M	N	20th Street south of Washington Street	SRG	Z	Z	Υ	Center of the plume
NW16-D	N	20th Street south of Washington Street	BF	Z	Z	Υ	Center of the plume
NW17-S	С	Monroe Street west of 19th Street	Colluvium	Z	Z	Z	Not part of the alluvial aquifer
NW18-S	С	Adams Street east of 18th Street	SRG	Z	Z	Z	Center of the plume
NW18-M	С	Adams Street east of 18th Street	Colluvium	Z	Z	Z	Center of the plume
NW19-M	С	Harrison Street and 24th Street	SRG	Z	Z	Z	
NW19-D	С	Harrison Street and 24th Street	BF	Z	Z	Z	
NW21-S	С	24th Street and Fillmore Street	SRG	Z		Y	Center of the plume
NW22-S	С	21st Place and Van Buren Street	SRG	Z	Y	Y	Center of the plume
NW22-D	С	21st Place and Van Buren Street	BF	Z	Y	Y	Center of the plume
NW23-S	С	23rd Street & Madison Street	SRG	Z	Y	Y	Center of the plume
NW23-D	С	23rd Street & Madison Street	BF	Z	Y	Y	Center of the plume
NW24-S	С	28th Street south of Fillmore Street	SRG	Z Z	Y Y	Y	Center of the plume
NW24-D NW25-S	C C	28th Street south of Fillmore Street 33rd Street and Garfield Street	BF SRG	Z Z	Y Y	Y Y	Center of the plume Center of the plume
OU312-M	С	15th Street and Adams Street	SRG	Z			Sampled by OU3 contractor

Table 7.1

Proposed OU2 GES Area Groundwater Monitoring Well Sampling Frequencies - 2018
52nd Street Superfund Site, OU2 Area
Phoenix, Arizona

Well ID Monitoring Wells Piezometers	Construction Type	Location	Hydro- stratigraphic Subunit Screened	Monit	rent toring 17)	Proposed Frequency (2018)	Comments
				Hydrauli	Water c Quality	Water Quality	
OU312-D	С	15th Street and Adams Street	BF	Z			Sampled by OU3 contractor
OU313-M	С	15th Street and Polk Street	SRG	Z			Sampled by OU3 contractor
OU313-D	С	15th Street and Polk Street	SRG	Z			Sampled by OU3 contractor
OU314-M	С	McKinley Street and 16th Street	SRG	Z			Sampled by OU3 contractor
OU314-D	С	McKinley Street and 16th Street	BF	Z			Sampled by OU3 contractor
PZ01-A	С	111 N 32nd Street	SRG	Z			Well went dry in 2014
PZ01-B	С	111 N 32nd Street	BF	Z	Υ	Υ	
PZ01-S	N	I-10 and Polk Street	SRG	Z			
PZ01-D	N	I-10 and Polk Street	BR	Z			
PZ02-S	N	I-10 and Polk Street	SRG	Z			
PZ02-D	N	I-10 and Polk Street	BR	Z			
TEW01	С	I-10 and Polk Street	SRG	Z			

Notes:

C - Conventional Well

E - Extraction Well

N - Nested Well

SRG - Salt River Gravels

BF - Interbedded sands and silt/clays (Basin Fill)

BR - Bedrock

X - Quarterly

Y - Annual (September)

Z - Semi-Annual (March/September)

S - Shallow

D - Deep

M - Middle

"--" - not sampled

ADOT ROW - Arizona Department of Transportation right-of-way

GES - Groundwater Extraction System

UPRR - Union Pacific Railroad

Appendices **GHD** | Effectiveness Report - 2017 | 013932 (41)

Appendix A Groundwater/Process Analytical Reports, Field Sample Keys, and Forms

ACCUTEST Gulf Coast

09/18/17

SGS ACCUTEST IS PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.

e-Hardcopy 2.0 **Automated Report**

Technical Report for

GHD Services Inc.

52nd Street Superfund Site - OU2 Area, Phoenix, AZ

013932

SGS Accutest Job Number: TD8565

Sampling Date: 09/05/17

GHD Services Inc.

4747 N. 22nd Street Second Floor

Phoenix, AZ 85016

manfred.plaschke@ghd.com; mary.cameron@ghd.com;

sheri.finn@ghd.com ATTN: Manfred Plaschke

Total number of pages in report: 64

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Anita Patel 713-271-4700

Certifications: TX (T104704220-17-27) AR (14-016-0) AZ (AZ0769) FL (E87628) KS (E-10366) LA (85695/04004) NJ (TX010) OK (2017-002) VA (8999)

This report shall not be reproduced, except in its entirety, without the written approval of SGS Accutest. Test results relate only to samples analyzed.

Richard Rodriguez

Laboratory Director

-1-

Table of Contents

Section 1: Sample Summary	3
Section 2: Summary of Hits	5
Section 3: Sample Results	8
3.1: TD8565-1: PS-090517-MM-01	9
3.2: TD8565-2: PS-090517-MM-02	12
3.3: TD8565-3: PS-090517-MM-03	13
3.4: TD8565-4: PS-090517-MM-04	14
3.5: TD8565-5: PS-090517-MM-05	15
3.6: TD8565-6: PS-090517-MM-06	16
3.7: TD8565-7: PS-090517-MM-07	17
3.8: TD8565-8: PS-090517-MM-08	18
3.9: TD8565-9: PS-090517-MM-09	19
3.10: TD8565-10: PS-090517-MM-10	20
3.11: TD8565-11: PS-090517-MM-11	21
3.12: TD8565-12: PS-090517-MM-12	22
3.13: TD8565-13: PS-090517-MM-13	23
3.14: TD8565-14: TRIP BLANK-14	24
3.15: TD8565-15: PS-090517-MM-15	25
3.16: TD8565-16: PS-090517-MM-16	27
3.17: TD8565-17: PS-090517-MM-17	28
Section 4: Misc. Forms	29
4.1: Arizona Qualifiers	30
4.2: Chain of Custody	31
Section 5: MS Volatiles - QC Data Summaries	38
5.1: Method Blank Summary	39
5.2: Blank Spike/Blank Spike Duplicate Summary	40
Section 6: General Chemistry - QC Data Summaries	41
6.1: Method Blank and Spike Results Summary	42
6.2: Duplicate Results Summary	43
6.3: Matrix Spike Results Summary	44
Section 7: Misc. Forms (SGS Accutest Lafayette)	45
7.1: Chain of Custody	46
Section 8: Metals Analysis - QC Data (SGS Accutest Lafayette)	49
8.1: Prep QC MP9078: B,Ca,Mg,K,Na	50
8.2: Prep QC MP9082: As,Ba,Cd,Cu,Fe,Pb,Se,Zn	55
8.3: Prep QC MP9086: Hg	60

Sample Summary

GHD Services Inc.

Job No:

TD8565

52nd Street Superfund Site - OU2 Area, Phoenix, AZ Project No: 013932

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
TD8565-1	09/05/17	10:20	09/06/17	AQ	Ground Water	PS-090517-MM-01
TD8565-2	09/05/17	10:30	09/06/17	AQ	Ground Water	PS-090517-MM-02
TD8565-3	09/05/17	10:35	09/06/17	AQ	Ground Water	PS-090517-MM-03
TD8565-4	09/05/17	10:40	09/06/17	AQ	Ground Water	PS-090517-MM-04
TD8565-5	09/05/17	10:45	09/06/17	AQ	Ground Water	PS-090517-MM-05
TD8565-6	09/05/17	10:50	09/06/17	AQ	Ground Water	PS-090517-MM-06
TD8565-7	09/05/17	10:53	09/06/17	AQ	Ground Water	PS-090517-MM-07
TD8565-8	09/05/17	11:00	09/06/17	AQ	Ground Water	PS-090517-MM-08
TD8565-9	09/05/17	11:30	09/06/17	AQ	Ground Water	PS-090517-MM-09
TD8565-10	09/05/17	11:45	09/06/17	AQ	Ground Water	PS-090517-MM-10
TD8565-11	09/05/17	12:15	09/06/17	AQ	Ground Water	PS-090517-MM-11
TD8565-12	09/05/17	12:30	09/06/17	AQ	Ground Water	PS-090517-MM-12
TD8565-13	09/05/17	13:00	09/06/17	AQ	Ground Water	PS-090517-MM-13

Sample Summary (continued)

GHD Services Inc.

Job No: TD8565

52 nd Street Superfund Site - OU2 Area, Phoenix, AZ Project No: 013932

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
TD8565-14	09/05/17	00:00	09/06/17	AQ	Trip Blank Water	TRIP BLANK-14
TD8565-15	09/05/17	12:18	09/06/17	AQ	Ground Water	PS-090517-MM-15
TD8565-16	09/05/17	12:05	09/06/17	AQ	Ground Water	PS-090517-MM-16
TD8565-17	09/05/17	12:40	09/06/17	AQ	Ground Water	PS-090517-MM-17

Summary of Hits Job Number: TD8565

Account: GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Collected: 09/05/17

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
TD8565-1 PS-090517-MM-0)1				
Chloroform	1.9	1.0		ug/l	SW846 8260C
cis-1,2-Dichloroethylene	5.5	1.0		ug/l	SW846 8260C
Tetrachloroethylene	2.0	1.0		ug/l	SW846 8260C
Trichloroethylene	29.5	0.50		ug/l	SW846 8260C
Calcium ^a	92600	100		ug/l	EPA 200.7
Magnesium ^a	34900	100		ug/l	EPA 200.7
Alkalinity, Bicarbonate	248	5.0		mg/l	SM 4500 CO2 D
Alkalinity, Total as CaCO3	248	5.0		mg/l	SM 2320B-2011
Hardness, Total ^b	375	0.66		mg/l	SM2340 B-11
Solids, Total Dissolved	1270	10		mg/l	SM 2540C-2011
TD8565-2 PS-090517-MM-0)2				
Chloroform	3.4	1.0		ug/l	SW846 8260C
cis-1,2-Dichloroethylene	7.7	1.0		ug/l	SW846 8260C
Trichloroethylene	0.63	0.50		ug/l	SW846 8260C
TD8565-3 PS-090517-MM-0)3				
Chloroform	3.8	1.0		ug/l	SW846 8260C
cis-1,2-Dichloroethylene	5.1	1.0		ug/l	SW846 8260C
TD8565-4 PS-090517-MM-0)4				
Chloroform	2.5	1.0		ug/l	SW846 8260C
1,1-Dichloroethylene	1.6	1.0		ug/l	SW846 8260C
cis-1,2-Dichloroethylene	9.9	1.0		ug/l	SW846 8260C
TD8565-5 PS-090517-MM-()5				
	0.4	1.0		/1	CW1046 92606
Chloroform	3.4	1.0		ug/l	SW846 8260C

TD8565-6 PS-090517-MM-06

No hits reported in this sample.

TD8565-7 PS-090517-MM-07

No hits reported in this sample.

Summary of Hits

Job Number: TD8565

Account: GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Collected: 09/05/17

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method		
TD8565-8 PS-090517-MM-08	8						
Chloroform	3.6	1.0		ug/l	SW846 8260C		
1,1-Dichloroethane	1.5	1.0		ug/l	SW846 8260C		
1,1-Dichloroethylene	3.3	1.0		ug/l	SW846 8260C		
cis-1,2-Dichloroethylene	9.8	1.0		ug/l	SW846 8260C		
Tetrachloroethylene	4.3	1.0		ug/l	SW846 8260C		
Trichloroethylene	45.4	0.50		ug/l	SW846 8260C		
TD8565-9 PS-090517-MM-09	9						
Chloroform	1.9	1.0		ug/l	SW846 8260C		
1,1-Dichloroethylene	1.3	1.0		ug/l	SW846 8260C		
cis-1,2-Dichloroethylene	7.2	1.0		ug/l	SW846 8260C		
Tetrachloroethylene	1.8	1.0		ug/l	SW846 8260C		
Trichloroethylene	38.7	0.50		ug/l	SW846 8260C		
TD8565-10 PS-090517-MM-10							
Chloroform	1.1	1.0		ug/l	SW846 8260C		
Tetrachloroethylene	1.1	1.0		ug/l	SW846 8260C		
Trichloroethylene	7.7	0.50		ug/l	SW846 8260C		

TD8565-11 PS-090517-MM-11

No hits reported in this sample.

TD8565-12 PS-090517-MM-12

No hits reported in this sample.

TD8565-13 PS-090517-MM-13

No hits reported in this sample.

TD8565-14 TRIP BLANK-14

No hits reported in this sample.

TD8565-15 PS-090517-MM-15

Barium ^c	51.1	10	ug/l	EPA 200.8
Boron ^a	1990	100	ug/l	EPA 200.7
Calcium ^a	97700	100	ug/l	EPA 200.7
Magnesium ^a	36400	100	ug/l	EPA 200.7

Summary of Hits

Job Number: TD8565

Account: GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Collected: 09/05/17

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method	
Potassium ^a	6450	500		ug/l	EPA 200.7	
Sodium ^a	279000	500		ug/l	EPA 200.7	
Alkalinity, Bicarbonate	215	5.0		mg/l	SM 4500 CO2 D	
Alkalinity, Total as CaCO3	215	5.0		mg/l	SM 2320B-2011	
Chloride	319	25		mg/l	EPA 300	
Fluoride	0.61	0.50		mg/l	EPA 300	
Hardness, Total ^b	394	0.66		mg/l	SM2340 B-11	
Nitrogen, Nitrate	6.4	0.50		mg/l	EPA 300	
Phosphate, Ortho	0.081	0.020		mg/l	SM 4500PE-2011	
Solids, Total Dissolved	1270	10		mg/l	SM 2540C-2011	
Sulfate	266	30		mg/l	EPA 300	
TD8565-16 PS-090517-MM-16						
Boron ^a	119	100		ug/l	EPA 200.7	
TD8565-17 PS-090517-MM-1	7					
Boron ^a	217	100		ug/l	EPA 200.7	

⁽a) Analysis performed at SGS Accutest, Lafayette, LA. Cert# AZ0805

⁽b) Calculated as: (Calcium * 2.497) + (Magnesium * 4.118)

⁽c) AZ:D1 Analysis performed at SGS Accutest, Lafayette, LA. Cert# AZ0805

Section 3 &

Report of Anal	lvsis	
r		

Report of Analysis

Client Sample ID: PS-090517-MM-01

 Lab Sample ID:
 TD8565-1
 Date Sampled:
 09/05/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/06/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1X01239714.D109/07/17 23:08EMn/an/aVX3332

Run #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	1.9	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	5.5	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	2.0	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	29.5	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	91%		72-122%
17060-07-0	1,2-Dichloroethane-D4	97%		68-124%
2037-26-5	Toluene-D8	104%		80-119%
460-00-4	4-Bromofluorobenzene	98%		72-126%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

9 of 64
ACCUTEST
TD8565

Report of Analysis

Page 1 of 1

Client Sample ID: PS-090517-MM-01

 Lab Sample ID:
 TD8565-1
 Date Sampled:
 09/05/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/06/17

 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Calcium ^a	92600	100	ug/l	1	09/08/17	09/08/17 ALA	EPA 200.7 ¹	EPA 200.7 ²
Magnesium ^a	34900	100	ug/l	1	09/08/17	09/08/17 ALA	EPA 200.7 ¹	EPA 200.7 ²

(1) Instrument QC Batch: L:MA9061(2) Prep QC Batch: L:MP9078

(a) Analysis performed at SGS Accutest, Lafayette, LA. Cert# AZ0805

RL = Reporting Limit

C

 Lab Sample ID:
 TD8565-1
 Date Sampled:
 09/05/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/06/17

 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Bicarbonate	248	5.0	mg/l	1	09/06/17 14:39	PA	SM 4500 CO2 D
Alkalinity, Carbonate	< 5.0	5.0	mg/l	1	09/06/17 14:39	PA	SM18 2320B
Alkalinity, Total as CaCO3	248	5.0	mg/l	1	09/06/17 14:39	PA	SM 2320B-2011
Hardness, Total ^a	375	0.66	mg/l	1	09/08/17 22:39	ALA	SM2340 B-11
Solids, Total Dissolved	1270	10	mg/l	1	09/06/17	BG	SM 2540C-2011

(a) Calculated as: (Calcium * 2.497) + (Magnesium * 4.118)

Report of Analysis

Client Sample ID: PS-090517-MM-02

 Lab Sample ID:
 TD8565-2
 Date Sampled:
 09/05/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/06/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 X01239715.D 1 09/07/17 23:35 EM n/a n/a VX3332
Run #2

.....

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	3.4	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	7.7	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	0.63	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	93%		72-122%
17060-07-0	1,2-Dichloroethane-D4	101%		68-124%
2037-26-5	Toluene-D8	103%		80-119%
460-00-4	4-Bromofluorobenzene	97%		72-126%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

Client Sample ID: PS-090517-MM-03

Lab Sample ID: TD8565-3 **Date Sampled:** 09/05/17 Matrix: AQ - Ground Water **Date Received:** 09/06/17 Method: SW846 8260C **Percent Solids:** n/a

52nd Street Superfund Site - OU2 Area, Phoenix, AZ **Project:**

File ID DF **Prep Batch Analytical Batch** Analyzed By **Prep Date** Run #1 X01239716.D 1 09/08/17 00:01 EM n/a VX3332 n/aRun #2

Purge Volume Run #1 5.0 mlRun #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	3.8	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	5.1	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	92%		72-122%
17060-07-0	1,2-Dichloroethane-D4	98%		68-124%
2037-26-5	Toluene-D8	103%		80-119%
460-00-4	4-Bromofluorobenzene	97%		72-126%

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

Report of Analys

 Client Sample ID:
 PS-090517-MM-04

 Lab Sample ID:
 TD8565-4
 Date Sampled:
 09/05/17

Matrix:AQ - Ground WaterDate Received:09/06/17Method:SW846 8260CPercent Solids:n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 X01239717.D 1 09/08/17 00:28 EM n/a n/a VX3332

Run #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	2.5	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	1.6	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	9.9	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	93%		72-122%
17060-07-0	1,2-Dichloroethane-D4	100%		68-124%
2037-26-5	Toluene-D8	103%		80-119%
460-00-4	4-Bromofluorobenzene	98%		72-126%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

Client Sample ID: PS-090517-MM-05

 Lab Sample ID:
 TD8565-5
 Date Sampled:
 09/05/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/06/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 X01239718.D 1 09/08/17 00:54 EM n/a n/a VX3332
Run #2

Run #1 5.0 ml
Run #2

CAS No.	Compound	Result	RL	Units Q	
71-43-2	Benzene	ND	1.0	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	ug/l	
67-66-3	Chloroform	3.4	1.0	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l	
156-59-2	cis-1,2-Dichloroethylene	5.8	1.0	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	ug/l	
74-87-3	Methyl chloride	ND	2.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	ug/l	
108-88-3	Toluene	ND	1.0	ug/l	
79-01-6	Trichloroethylene	ND	0.50	ug/l	
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l	
75-01-4	Vinyl chloride	ND	0.50	ug/l	
1330-20-7	Xylene (total)	ND	1.0	ug/l	
	m,p-Xylene	ND	1.0	ug/l	
95-47-6	o-Xylene	ND	0.50	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
1868-53-7	Dibromofluoromethane	92%		72-122%	
17060-07-0	1,2-Dichloroethane-D4	99%		68-124%	
2037-26-5	Toluene-D8	103%		80-119%	
460-00-4	4-Bromofluorobenzene	98%	72-126%		

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Client Sample ID: PS-090517-MM-06

 Lab Sample ID:
 TD8565-6
 Date Sampled:
 09/05/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/06/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 X01239719.D 1 09/08/17 01:21 EM n/a n/a VX3332
Run #2

Purge Volume
Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q		
71-43-2	Benzene	ND	1.0	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	ug/l		
67-66-3	Chloroform	ND	1.0	ug/l		
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l		
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l		
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l		
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l		
74-83-9	Methyl bromide	ND	2.0	ug/l		
74-87-3	Methyl chloride	ND	2.0	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l		
127-18-4	Tetrachloroethylene	ND	1.0	ug/l		
108-88-3	Toluene	ND	1.0	ug/l		
79-01-6	Trichloroethylene	ND	0.50	ug/l		
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l		
75-01-4	Vinyl chloride	ND	0.50	ug/l		
1330-20-7	Xylene (total)	ND	1.0	ug/l		
	m,p-Xylene	ND	1.0	ug/l		
95-47-6	o-Xylene	ND	0.50	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
CAD III.	burrogan incoveries	Kuiiπ 1	Kuiiπ 2	Limits		
1868-53-7	Dibromofluoromethane	91%		72-122%		
17060-07-0	1,2-Dichloroethane-D4	98%		68-124%		
2037-26-5	Toluene-D8	104%		80-119%		
460-00-4	4-Bromofluorobenzene	97%	72-126%			

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

16 of 64 ACCUTEST TD8565

Page 1 of 1

Report of Analysis

Client Sample ID: PS-090517-MM-07

Lab Sample ID: TD8565-7 **Date Sampled:** 09/05/17 Matrix: AQ - Ground Water **Date Received:** 09/06/17 Method: SW846 8260C **Percent Solids:** n/a

52nd Street Superfund Site - OU2 Area, Phoenix, AZ **Project:**

File ID DF **Prep Batch Analytical Batch** Analyzed By **Prep Date** Run #1 X01239720.D 1 09/08/17 01:47 EM n/aVX3332 n/a

Run #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q		
71-43-2	Benzene	ND	1.0	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	ug/l		
67-66-3	Chloroform	ND	1.0	ug/l		
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l		
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l		
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l		
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l		
74-83-9	Methyl bromide	ND	2.0	ug/l		
74-87-3	Methyl chloride	ND	2.0	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l		
127-18-4	Tetrachloroethylene	ND	1.0	ug/l		
108-88-3	Toluene	ND	1.0	ug/l		
79-01-6	Trichloroethylene	ND	0.50	ug/l		
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l		
75-01-4	Vinyl chloride	ND	0.50	ug/l		
1330-20-7	Xylene (total)	ND	1.0	ug/l		
	m,p-Xylene	ND	1.0	ug/l		
95-47-6	o-Xylene	ND	0.50	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1868-53-7	Dibromofluoromethane	92%		72-122%		
17060-07-0	1,2-Dichloroethane-D4	99%		68-124%		
2037-26-5	Toluene-D8	103%		80-119%		
460-00-4	4-Bromofluorobenzene	98%	72-1269			

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ACCUTEST

Client Sample ID: PS-090517-MM-08

 Lab Sample ID:
 TD8565-8
 Date Sampled:
 09/05/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/06/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1X01239721.D109/08/17 02:14EMn/an/aVX3332

Run #2

Purge Volume
Run #1 5.0 ml
Run #2

CAS No.	Compound	Result	RL	Units Q		
71-43-2	Benzene	ND	1.0	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	ug/l		
67-66-3	Chloroform	3.6	1.0	ug/l		
75-34-3	1,1-Dichloroethane	1.5	1.0	ug/l		
75-35-4	1,1-Dichloroethylene	3.3	1.0	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l		
156-59-2	cis-1,2-Dichloroethylene	9.8	1.0	ug/l		
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l		
74-83-9	Methyl bromide	ND	2.0 ug/l			
74-87-3	Methyl chloride	ND	2.0	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l		
127-18-4	Tetrachloroethylene	4.3	1.0	ug/l		
108-88-3	Toluene	ND	1.0	ug/l		
79-01-6	Trichloroethylene	45.4	0.50	ug/l		
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l		
75-01-4	Vinyl chloride	ND	0.50	ug/l		
1330-20-7	Xylene (total)	ND	1.0	ug/l		
	m,p-Xylene	ND	1.0	ug/l		
95-47-6	o-Xylene	ND	0.50	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1868-53-7	Dibromofluoromethane	92%		72-122%		
17060-07-0	1,2-Dichloroethane-D4	101%		68-124%		
2037-26-5	Toluene-D8	103%	80-119%			
460-00-4	4-Bromofluorobenzene	97%	72-126%			

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Client Sample ID: PS-090517-MM-09

 Lab Sample ID:
 TD8565-9
 Date Sampled:
 09/05/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/06/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Run #1 X01239722.D 1 09/08/17 02:40 EM n/a Prep Date Prep Batch N/A VX3332
Run #2

Purge Volume

Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q		
71-43-2	Benzene	ND	1.0	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	ug/l		
67-66-3	Chloroform	1.9	1.0	ug/l		
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l		
75-35-4	1,1-Dichloroethylene	1.3	1.0	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0 ug/l			
156-59-2	cis-1,2-Dichloroethylene	7.2	1.0	ug/l		
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l		
74-83-9	Methyl bromide	ND	2.0	ug/l		
74-87-3	Methyl chloride	ND	2.0	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l		
127-18-4	Tetrachloroethylene	1.8	1.0	ug/l		
108-88-3	Toluene	ND	1.0	ug/l		
79-01-6	Trichloroethylene	38.7	0.50	ug/l		
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l		
75-01-4	Vinyl chloride	ND	0.50	ug/l		
1330-20-7	Xylene (total)	ND	1.0	ug/l		
	m,p-Xylene	ND	1.0	ug/l		
95-47-6	o-Xylene	ND	0.50	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1868-53-7	Dibromofluoromethane	92%		72-122%		
17060-07-0	1,2-Dichloroethane-D4	100%		68-124%		
2037-26-5	Toluene-D8	103%	80-119			
460-00-4	4-Bromofluorobenzene	luorobenzene 97%				

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Client Sample ID: PS-090517-MM-10

 Lab Sample ID:
 TD8565-10
 Date Sampled:
 09/05/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/06/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 X01239723.D 1 09/08/17 03:07 EM n/a vX3332

Run #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q		
71-43-2	Benzene	ND	1.0	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	ug/l		
67-66-3	Chloroform	1.1	1.0	ug/l		
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l		
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l		
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l		
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l		
74-83-9	Methyl bromide	ND	2.0 ug/l			
74-87-3	Methyl chloride	ND	2.0	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l		
127-18-4	Tetrachloroethylene	1.1	1.0	ug/l		
108-88-3	Toluene	ND	1.0	ug/l		
79-01-6	Trichloroethylene	7.7	0.50	ug/l		
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l		
75-01-4	Vinyl chloride	ND	0.50	ug/l		
1330-20-7	Xylene (total)	ND	1.0	ug/l		
	m,p-Xylene	ND	1.0	ug/l		
95-47-6	o-Xylene	ND	0.50	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1868-53-7	Dibromofluoromethane	90%		72-122%		
17060-07-0	1,2-Dichloroethane-D4	97%		68-124%		
2037-26-5	Toluene-D8	104%	80-119%			
460-00-4	4-Bromofluorobenzene	97%	72-126%			

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Report of Analysis

Client Sample ID: PS-090517-MM-11

Lab Sample ID: TD8565-11 **Date Sampled:** 09/05/17 Matrix: AQ - Ground Water **Date Received:** 09/06/17 Method: SW846 8260C **Percent Solids:** n/a

52nd Street Superfund Site - OU2 Area, Phoenix, AZ **Project:**

File ID DF **Prep Batch Analytical Batch** Analyzed By **Prep Date** Run #1 X01239724.D 1 09/08/17 03:33 EM n/aVX3332 n/a

Run #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q		
71-43-2	Benzene	ND	1.0	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	ug/l		
67-66-3	Chloroform	ND	1.0	ug/l		
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l		
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l		
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l		
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l		
74-83-9	Methyl bromide	ND	2.0	ug/l		
74-87-3	Methyl chloride	ND	2.0	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l		
127-18-4	Tetrachloroethylene	ND	1.0	ug/l		
108-88-3	Toluene	ND	1.0	ug/l		
79-01-6	Trichloroethylene	ND	0.50	ug/l		
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l		
75-01-4	Vinyl chloride	ND	0.50	ug/l		
1330-20-7	Xylene (total)	ND	1.0	ug/l		
	m,p-Xylene	ND	1.0	ug/l		
95-47-6	o-Xylene	ND	0.50	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
CHS 110.	Surrogute Recoveries	Kuii// I	Ruin 2	Ziiiits		
1868-53-7	Dibromofluoromethane	90%		72-122%		
17060-07-0	1,2-Dichloroethane-D4	98%		68-124%		
2037-26-5	Toluene-D8	103%		80-119%		
460-00-4	4-Bromofluorobenzene	98%	72-126			

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ACCUTEST

Client Sample ID: PS-090517-MM-12

Lab Sample ID: TD8565-12 **Date Sampled:** 09/05/17 Matrix: AQ - Ground Water **Date Received:** 09/06/17 Method: SW846 8260C **Percent Solids:** n/a

52nd Street Superfund Site - OU2 Area, Phoenix, AZ **Project:**

File ID DF **Prep Batch Analytical Batch** Analyzed By **Prep Date** Run #1 X01239725.D 1 09/08/17 04:00 EM n/aVX3332 n/a

Run #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q		
71-43-2	Benzene	ND	1.0	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	ug/l		
67-66-3	Chloroform	ND	1.0	ug/l		
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l		
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l		
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l		
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l		
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l		
74-83-9	Methyl bromide	ND	2.0	ug/l		
74-87-3	Methyl chloride	ND	2.0	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l		
127-18-4	Tetrachloroethylene	ND	1.0	ug/l		
108-88-3	Toluene	ND	1.0	ug/l		
79-01-6	Trichloroethylene	ND	0.50	ug/l		
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l		
75-01-4	Vinyl chloride	ND	0.50	ug/l		
1330-20-7	Xylene (total)	ND	1.0	ug/l		
	m,p-Xylene	ND	1.0	ug/l		
95-47-6	o-Xylene	ND	0.50	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1868-53-7	Dibromofluoromethane	93%		72-122%		
17060-07-0	1,2-Dichloroethane-D4	102%		68-124%		
2037-26-5	Toluene-D8	102%	80-119%			
460-00-4	4-Bromofluorobenzene	97%	72-126%			

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ACCUTEST

Client Sample ID: PS-090517-MM-13

 Lab Sample ID:
 TD8565-13
 Date Sampled:
 09/05/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/06/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1X01239726.D109/08/17 04:26EMn/an/aVX3332

Run #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q		
71-43-2	Benzene	ND	1.0	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	ug/l		
67-66-3	Chloroform	ND	1.0	ug/l		
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l		
75-35-4	1,1-Dichloroethylene	ND	1.0 ug/l			
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l		
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l		
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l		
74-83-9	Methyl bromide	ND	2.0	ug/l		
74-87-3	Methyl chloride	ND	2.0	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l		
127-18-4	Tetrachloroethylene	ND	1.0	ug/l		
108-88-3	Toluene	ND	1.0	ug/l		
79-01-6	Trichloroethylene	ND	0.50	ug/l		
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l		
75-01-4	Vinyl chloride	ND	0.50	ug/l		
1330-20-7	Xylene (total)	ND	1.0	ug/l		
	m,p-Xylene	ND	1.0	ug/l		
95-47-6	o-Xylene	ND	0.50	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1868-53-7	Dibromofluoromethane	92%		72-122%		
17060-07-0	1,2-Dichloroethane-D4	100%		68-124%		
2037-26-5	Toluene-D8	103%	80-1199			
460-00-4	4-Bromofluorobenzene	97%				

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TRIP BLANK-14

Lab Sample ID: TD8565-14 **Date Sampled:** 09/05/17 Matrix: AQ - Trip Blank Water **Date Received:** 09/06/17 Method: SW846 8260C **Percent Solids:** n/a

52nd Street Superfund Site - OU2 Area, Phoenix, AZ **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 X01239713.D 1 09/07/17 22:42 EM n/aVX3332 n/a

Run #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q	
71-43-2	Benzene	ND	1.0	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	ug/l	
67-66-3	Chloroform	ND	1.0	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	ug/l	
74-87-3	Methyl chloride	ND	2.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND 1.0		ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	ug/l	
108-88-3	Toluene	ND	1.0	ug/l	
79-01-6	Trichloroethylene	ND	0.50	ug/l	
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l	
75-01-4	Vinyl chloride	ND	0.50	ug/l	
1330-20-7	Xylene (total)	ND	1.0	ug/l	
	m,p-Xylene	ND	1.0	ug/l	
95-47-6	o-Xylene	ND	0.50	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
1868-53-7	Dibromofluoromethane	91%		72-122%	
17060-07-0	1,2-Dichloroethane-D4	98%		68-124%	
2037-26-5	Toluene-D8	104%		80-119%	
460-00-4	4-Bromofluorobenzene	98% 72-1			

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ACCUTEST

Client Sample ID: PS-090517-MM-15

 Lab Sample ID:
 TD8565-15
 Date Sampled:
 09/05/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/06/17

 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic ^a	< 8.0	8.0	ug/l	2	09/08/17	09/08/17 ALA	EPA 200.8 ¹	EPA 200.8 ⁵
Barium ^a	51.1	10	ug/l	2	09/08/17	09/08/17 ALA	EPA 200.8 ¹	EPA 200.8 ⁵
Boron b	1990	100	ug/l	1	09/08/17	09/08/17 ALA	EPA 200.7 ²	EPA 200.7 ⁴
Cadmium ^a	< 4.0	4.0	ug/l	2	09/08/17	09/08/17 ALA	EPA 200.8 ¹	EPA 200.8 ⁵
Calcium ^b	97700	100	ug/l	1	09/08/17	09/08/17 ALA	EPA 200.7 ²	EPA 200.7 ⁴
Copper a	< 4.0	4.0	ug/l	2	09/08/17	09/08/17 ALA	EPA 200.8 ¹	EPA 200.8 ⁵
Iron ^a	< 200	200	ug/l	2	09/08/17	09/08/17 ALA	EPA 200.8 ¹	EPA 200.8 ⁵
Lead a	< 2.0	2.0	ug/l	2	09/08/17	09/08/17 ALA	EPA 200.8 ¹	EPA 200.8 ⁵
Magnesium b	36400	100	ug/l	1	09/08/17	09/08/17 ALA	EPA 200.7 ²	EPA 200.7 ⁴
Mercury b	< 0.20	0.20	ug/l	1	09/08/17	09/08/17 ALA	EPA 245.1 ³	EPA 245.1 ⁶
Potassium ^b	6450	500	ug/l	1	09/08/17	09/08/17 ALA	EPA 200.7 ²	EPA 200.7 ⁴
Selenium a	< 10	10	ug/l	2	09/08/17	09/08/17 ALA	EPA 200.8 ¹	EPA 200.8 ⁵
Sodium ^b	279000	500	ug/l	1	09/08/17	09/08/17 ALA	EPA 200.7 ²	EPA 200.7 ⁴
Zinc ^a	< 12	12	ug/l	2	09/08/17	09/08/17 ALA	EPA 200.8 ¹	EPA 200.8 ⁵

(1) Instrument QC Batch: L:MA9054
(2) Instrument QC Batch: L:MA9061
(3) Instrument QC Batch: L:MA9063
(4) Prep QC Batch: L:MP9078
(5) Prep QC Batch: L:MP9082
(6) Prep QC Batch: L:MP9086

(a) AZ:D1 Analysis performed at SGS Accutest, Lafayette, LA. Cert# AZ0805

(b) Analysis performed at SGS Accutest, Lafayette, LA. Cert# AZ0805

SGS 25 of 64
ACCUTEST

Page 1 of 1

Client Sample ID: PS-090517-MM-15

 Lab Sample ID:
 TD8565-15
 Date Sampled:
 09/05/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/06/17

 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Bicarbonate	215	5.0	mg/l	1	09/06/17 14:39	РΛ	SM 4500 CO2 D
Alkalinity, Carbonate	< 5.0	5.0	mg/l	1	09/06/17 14:39		SM18 2320B
Alkalinity, Total as CaCO3	215	5.0	mg/l	1	09/06/17 14:39	PA	SM 2320B-2011
Chloride	319	25	mg/l	50	09/06/17 14:07	SM	EPA 300
Fluoride	0.61	0.50	mg/l	1	09/06/17 13:20	SM	EPA 300
Hardness, Total ^a	394	0.66	mg/l	1	09/08/17 22:44	ALA	SM2340 B-11
Nitrogen, Nitrate	6.4	0.50	mg/l	1	09/06/17 13:20	SM	EPA 300
Nitrogen, Nitrite	< 0.50	0.50	mg/l	1	09/06/17 13:20	SM	EPA 300
Phosphate, Ortho	0.081	0.020	mg/l	1	09/06/17 16:40	BG	SM 4500PE-2011
Solids, Total Dissolved	1270	10	mg/l	1	09/06/17	BG	SM 2540C-2011
Sulfate	266	30	mg/l	50	09/06/17 14:07	SM	EPA 300

(a) Calculated as: (Calcium * 2.497) + (Magnesium * 4.118)

RL = Reporting Limit

Page 1 of 1

Client Sample ID: PS-090517-MM-16

 Lab Sample ID:
 TD8565-16
 Date Sampled:
 09/05/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/06/17

 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Boron ^a	119	100	ug/l	1	09/08/17	09/08/17 ALA	EPA 200.7 ¹	EPA 200.7 ²

(1) Instrument QC Batch: L:MA9061(2) Prep QC Batch: L:MP9078

(a) Analysis performed at SGS Accutest, Lafayette, LA. Cert# AZ0805

SGS 27 of 64
ACCUTEST

Page 1 of 1

Client Sample ID: PS-090517-MM-17

Lab Sample ID: TD8565-17 **Date Sampled:** 09/05/17 Matrix: **Date Received:** 09/06/17 AQ - Ground Water **Percent Solids:** n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Boron ^a	217	100	ug/l	1	09/08/17	09/08/17 ALA	EPA 200.7 ¹	EPA 200.7 ²

(1) Instrument QC Batch: L:MA9061 (2) Prep QC Batch: L:MP9078

(a) Analysis performed at SGS Accutest, Lafayette, LA. Cert# AZ0805

RL = Reporting Limit

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- · Arizona Qualifiers
- Chain of Custody

Arizona Qualifiers

Page 1 of 1

Job Number: TD8565

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

The following Arizona qualifiers have been applied to data and/or QC in this report.

Qual	Description
D1	Sample required dilution due to matrix.
Q9	Insufficient sample received to meet method QC requirements.

PHOENIX

10 gate Jone: 9/6/17

Date Time:

CHAIN OF CUSTODY

	80	56	<u> </u>				CHA	IN ()F	CL	JST	ГОІ	YΩ											P	AGE	=	_ 0	F_Z
Manager	O.		ACCI	ITE	EST		10165 H	ırwin Dr,	Ste 150 I	lousto	n, TX	77036					FED.EX	Trackir	"88°	01	800	04	Bott	e Order C	ontrol #			
	Client / Be	porting Inforn		DOOR NAMES			TEL. 7	13-271-47 www	00 FA2		3-271-	4770					SGS Ac	cutest C	luote #				SGS	Accutest	Job #	T	18:	545
Compo				Pro	ject Name:		Projec	t Inform	ation											Re	que	stec	An	alys	e s			Matrix Codes
Compa	ny Name	·HD	#200 Zip 850/ C E-mail		,	Ou:	Ĵ																					
Street /	Address	1 0-	A 0	Stre	et																							DW - Drinking Wate
City	1 /4 Z Z X	ate 37.		City	CNZ	Oth 51	State	Billing	Informa	tìon (i	if diffe	rent fro	m Rep	ort to)							,	m						GW - Ground Water WW - Water
Phoe	Wix A	Z	85016	PI	20 eni	×	12		ny monto									0		١.,	. 0	9						SW - Surface Water SO - Soil SL- Sludge
NI.	Contact PLASCH I	Vp	E-mail	Proj	ject# /3.1.73.0	631-1	7.2.1	Street /	Address		-						3	S		1	1	9						SED-Sediment OI - Oil
Phone i	1 11130141		Fax#	Clie	nt Purchase	Order#	31	City					ate				0	G		1 0	J	٦						LIQ - Other Liquid AIR - Air
Sample	3 - 3 / 4 - r(s) Name(s)	1900	Di "	_				Joney					ate		Zi	р	2		\ \(\frac{1}{2} \)	1 3		3						SOL - Other Solid WP - Wipe
M	ike NI	cNil	40 Phone #	Prop	ject Manager Mau Co	ed PLAS	. (11)	Attentio	n:								20	8	1	2011/00		7						FB-Field Blank
sas		4-8	100 000	Ė	VIXITE	Colle	ction -			I		Number	of preso	rved Bo	ttles			X	1	7		Ŋ						
Accutest Sample #	Fie	ld ID / Point of	Collection						# of	_	NaOH	HNO3 HZSO4	# S	HO H	1504	ENCORE		AL		1	16	3						
-1				+	Date	Time	Sampled By	Matrix	bottles	-	2 3	++	2 2	5 2	Na TS	OTI					_	\perp	\perp					LAB USE ONLY
2	P3 - 09	0311-1	MM - 01	1	15/17	1020	MMC	CW	6	X	+	X	\vdash	44	\perp	Ш	V	V	سا	V	1	1						
3		 	00	1	-	1030	┼-┼-	++	3	Х	+	\vdash	₩	+	+	++	V				<u> </u>	<u> </u>	_					
4			03		 	1035		++		¥	+	+	⊬	++	-	+	4				<u> </u>	_	_					
5			04	+	+	1040		++	$\vdash\vdash$	X	-	\vdash	\vdash	++	+	\square	V					_	_					
4			05	\vdash	 	1045		╫	┝┼╴	X	+	$\vdash\vdash$	⊬	++	+	НН	~					-	╄	1	1	1_	\perp	
7			07	\vdash	-	1050		++	\vdash	X.	+	╁	\vdash	+	+	HH	V			<u> </u>	<u> </u>	-	<u> </u>		L	4	Ш	-
8			08	\vdash	-	1053		$\vdash\vdash$	$\vdash\vdash$	ν.	+	╁	\vdash	+	+	+++	V	T	AC	G	(1)	B	¥		7	ightharpoons		
9			09	T	1	1130	-	╁┼	\vdash	У	+	$\vdash\vdash$	\vdash	+	+	HH	V				-	ـــ	-			X		
10			10	\vdash		1145		\vdash	\vdash	X Y	+	\vdash	\vdash	++	+	HH	V	-					╄	 	1	LY		
il			110	T		1215		\vdash	$\vdash \vdash$	V	+	╫	\vdash	$^{+}$	+	\vdash	V	-	EH	E L	1 3.7))	1	<u>. _ `</u>	14	-		
12	1	1	12	1		1230				X	+	\vdash	\vdash	++	+	$\vdash \vdash \vdash$	V	9	37.5	117	à R.ac	9 8	* *	·				Ministration (12)
		nd Time (Business								IXI.	Data E	L I Delivera	ble Inf	ormati	on		VI					Con	ments	/ Spec	ial Instru	ctions		
	Standard 5 Day RUSH			Approv	ved By (SGS /	Accutest PM): / Date:			Commerc					<u> </u>					************							Ollorio	-	
-	4 Day RUSH				***************************************	-			FULT1 (Level	3+4)	Vei 2)				Format	_	ŀ										
-	2 Day RUSH								REDT1 (Commerc									.										
-	1 Day EMER							L	Jonniner			ercial "A"	= Res	ults On	ly													
	zmergency & Ru	sh T/A data availat	ole VIA Lablink				Form: SM021-	0		C	comme	ercial "B" ercial "C"	= Rac	nite + C	200	Curronate	Summ											
Relingu	ished by Sampler		/ Date Time:-		San	nple Custody mu	st be Hocum	ented be	low eac	h tim	e sam	ples c	nange	posse	essio	n, inclu	ding co	urier (
1Mi	LMA	in 9/	5/17 Date Time	32	2	1	W/M		9/5/1	18	30	Relingui	shed By	હ્ય `	er.	n, includ	~			Date Tin	10: 7	620	Receiv	ed By:	ΞX		1	Date Time:
Relinqu 3	ished by sampler	k	10 gate Une: 0	all	117	Received By:	/'		Date Time	:		Relinqui	shed By	, J						Date Tin	ne:		Receiv	ed By:			-	Date Time:

Date Time:

Custody Seal #

TD8565: Chain of Custody

Page 1 of 7

Date Time:

Cooler Temp. 2.9

PAGE \rightarrow OF \rightarrow

ACC	UTEST	101	65 Harwin E	Dr. Ste 150 Ho	uston, TX	77036			FED-E	X Trackie	3" 8	1089	₹∂i	a U B	ottle Order 0	Control #		
		T	EL. 713-271-	-4700 FAX:	713-271	-4770			SGSA	ccutest C	luote #	,,,,	00.		GS Accutes	I Job#	77\5	X65
Client / Reporting Information			oject Info									Rea	uesi	e Wa	nalys		1000	Matrix Codes
Company Name	Project Name							***************************************		Π				\$	1	Ť		Iviatrix Codes
Street Address	Street	0 U	$L \subset L$											3	•			
4747 N ZZNR ST. # ZOO	12 11	20th ST.												2				DW - Drinking Water GW - Ground Water
City State Zip	City	Si	ete Com	ing Information	on (if diff	erent fro	m Repor	t to)	-					33				WW - Water SW - Surface Water
Project Contact Project Contact Project Contact	Phoen	14 AZ							l		\w			M				SO - Soil SL- Sludge
Street Address H747 N 22NL ST. F 200 City State 2p Phoening AZ 8501L Project Contact E-mail M. PASCHKE Foon# COZ-01L 700 Sampler(s) Name(s) Phone #	Project#	35 /5/	Stree	et Address					7 60		200		U	8				SED-Sediment OI - Oil
Phone # Fax #	Client Purcha:	33 - 131 se Order #	City				ate				D d	CHEM	3340C					LIQ - Other Liquid AIR - Air
905-91C-3900			City			51	ate	. Zip	0	<	747	He	33	2187				SOL - Other Solid WP - Wipe
Sampler(s) Name(s) Phone #	Project Manac	ger	Atter	ntion:					7	2	107	2 3	1	4				FB-Field Blank
MITE MENT	MAUTE	ed Phaschice		***************************************	Г	Mumba	of preserv	ad Dawler	0	1 8	20 3	Cher	33	1			-	
SGS Accutest				T		5	i pieserv	ed Bottles	_ '	100	Metals 200	23	340	1				
Sample # Field ID / Point of Collection	Date	Time Sampl	ed By Mat	# of bottles	NaOH	HNO3 H2SO	NONE DI Wal	MEOH TSP VaHSC	JTHE.	1	× 8	٦	4	\$				LAB USE ONLY
13 PS-090517-MM-	3 9/5/17	1300 MA	10 CH) 3	7	++	H		X	-	1					+		LAB USE UNLY
		RAP BLANK	1	2		++	\vdash	++++						\dashv		+-		-
	5	1218		3		V /		+++	+		-			_		+-+		-
	6		-		++	1010	1	++++	+		X	X	X	<u>۲</u>		+		
	7	1305	- -		-H		$\vdash\vdash\vdash$	++++		X	\vdash		_	_		\perp		
	/	1940		1	-+-	14	\vdash	+		X			_	_				
					++	+	\Box	+ + +										
					\perp	$\bot \bot$	Ш	$\perp \downarrow \downarrow \downarrow \downarrow$										
					\perp		Ш					1	1					
													T					
						П							\neg	\neg	_	+		
						TT							$\neg \uparrow$	_	_	++	_	
Turnaround Time (Business days)						Delivera								Comme	nts / Spec	ial Instruct	tions	
5 Day RUSH	Approved By (SG	S Accutest PM): / Date:		Commerci Commerci		,		TRRP										
4 Day RUSH	***************************************] FULT1 (L		,		EDD Form.										
3 Day RUSH 2 Day RUSH				REDT1 (L)	_											
1 Day EMERGENCY		NAME OF THE OWNER OWNER OF THE OWNER OWNE] Commerci		nercial "A	' = Doord	in Only										
Emergency & Rush T/A data available VIA Lablink	**							is Uniy is + QC Summar	v	}								
	S	Form: Si ample Custody must be do		helow each	Comm	nercial "C	" = Resul	ts + QC & Surroc	ate Sumo	nary	4-12							
Relinquished by Sampler: 9/5/17 Date Tim	イスハ	Received By:	11	Date time:	7 170	Relingu	shed By:	4 VVV	auumg C	ourier	In	ate Time	:	Res	eived By:			Date Time:
Relinquished by Sampler: Date Time	<u> </u>	1 / /	1 1	1/2/1	1150	12 (em	vor p	\sim			1917			eived By:	:X		
3 1 40 eX		3 5 2851 10	10 91	4717	-	Relinqui	shed By:	1	_		D	ate Time	:	Red	eived By:			Date Time:
Relinquished by: Date Time 5		Received By:		Date Time:		Custody	Seal#	Ĭ	Intact		Preserved		pplicable	, 14		On Ice	Coole	or Temp. 2.9
		10							Not intac			2				∕ □		er Temp. 2 · 9

TD8565: Chain of Custody

Page 2 of 7

TD8565: Chain of Custody Page 3 of 7

SGS Accutest Sample Receipt Summary

Job Number: TD85	65	(Client: GHD	Project: OU2								
Date / Time Received: 9/6/2	017 10):10:00 AN	Delivery	Method	l:	Airbill #'s: 770188018064						
No. Coolers: 1	Ther	m ID: IR	.9;			Temp Adjustment Factor: 0;	;					
Cooler Temps (Initial/Adjuste	:d): #	1: (2.9/2.9));									
Cooler Security Y	or N	<u>L</u>		Υ (or N	Sample Integrity - Documentation	<u>Y</u>	or N				
Custody Seals Present:		3.	COC Present:	✓		Sample labels present on bottles:	✓					
2. Custody Seals Intact:		4. Sm	npl Dates/Time OK	\checkmark		Container labeling complete:	✓					
Cooler Temperature	<u>Y</u>	or N				3. Sample container label / COC agree:	✓					
Temp criteria achieved:	✓					Sample Integrity - Condition	<u>_Y</u> _	or N				
Cooler temp verification:						1. Sample recyd within HT:	✓					
3. Cooler media:		ce (Bag)				All containers accounted for:	✓					
Quality Control Preservation	<u> Y</u>	or N	N/A	WTB	STB	3. Condition of sample:		Intact				
1. Trip Blank present / cooler:	✓			\checkmark		Sample Integrity - Instructions	Υ	or N	N/A			
2. Trip Blank listed on COC:	✓					Analysis requested is clear:	✓					
3. Samples preserved properly:	✓					2. Bottles received for unspecified tests		✓				
4. VOCs headspace free:	✓					3. Sufficient volume recvd for analysis:	✓					
						4. Compositing instructions clear:			✓			
						5. Filtering instructions clear:			✓			
Comments												

TD8565: Chain of Custody Page 4 of 7

Page 1 of 4

Sample Receipt Log

 Job #:
 TD8565
 Date / Time Received:
 9/6/2017 10:10:00 AM 10:10:
 Initials:
 DS

Client: GHD

Cooler#	Sample ID:	Vol	Bot#	Location	Pres	pH	Therm ID	Initial Temp	Therm CF	Corrected Temp
1	TD8565-1	250ml	1	SUB	HNO3	pH < 2	IR9	2.9	0	2.9
1	TD8565-1	250ml	2	3J	N/P	Note #2 - Preservative check not applicable.	IR9	2.9	0	2.9
1	TD8565-1	250ml	3	3J	N/P	Note #2 - Preservative check not applicable.	IR9	2.9	0	2.9
1	TD8565-1	40ml	4	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-1	40ml	5	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-1	40ml	6	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-2	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-2	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-2	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-3	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-3	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-3	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-4	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-4	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-4	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-5	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-5	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-5	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-6	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-6	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-6	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-7	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-7	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9

TD8565: Chain of Custody Page 5 of 7

Sample Receipt Log

Client: GHD

Cooler#	Sample ID:	Vol	Bot #	Location	Pres	pH	Therm ID	Initial Temp	Therm CF	Corrected Temp
1	TD8565-7	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-8	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-8	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-8	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-9	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-9	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-9	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-10	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-10	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-10	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-11	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-11	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-11	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-12	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-12	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-12	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-13	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-13	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-13	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-14	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-14	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	2.9	0	2.9
1	TD8565-15	250ml	1	3J	N/P	Note #2 - Preservative check not applicable.	IR9	2.9	0	2.9
1	TD8565-15	250ml	2	1K	H2SO4	pH < 2	IR9	2.9	0	2.9

TD8565: Chain of Custody Page 6 of 7

Sample Receipt Log

 Job #:
 TD8565
 Date / Time Received:
 9/6/2017 10:10:00 AM 10:10:
 Initials:
 DS

Client: GHD

Cooler#	Sample ID:	Vol	Bot #	Location	Pres	pH	Therm ID	Initial Temp	Therm CF	Corrected Temp
1	TD8565-15	250ml	3	SUB	HNO3	pH < 2	IR9	2.9	0	2.9
1	TD8565-16	250ml	1	SUB	HNO3	pH < 2	IR9	2.9	0	2.9
1	TD8565-17	250ml	1	SUB	HNO3	pH < 2	IR9	2.9	0	2.9

TD8565: Chain of Custody

Page 7 of 7

Section 5

MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: SW846 8260C

G

Method Blank Summary

Job Number: TD8565

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VX3332-MB	X01239712.D	1	09/07/17	EM	n/a	n/a	VX3332

The QC reported here applies to the following samples:

 $TD8565-1,\ TD8565-2,\ TD8565-3,\ TD8565-4,\ TD8565-5,\ TD8565-6,\ TD8565-7,\ TD8565-8,\ TD8565-9,\ TD8565-10,\ TD8565-11,\ TD8565-12,\ TD8565-13,\ TD8565-14$

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	0.50	ug/l
75-27-4	Bromodichloromethane	ND	0.50	ug/l
67-66-3	Chloroform	ND	0.50	ug/l
75-34-3	1,1-Dichloroethane	ND	0.50	ug/l
75-35-4	1,1-Dichloroethylene	ND	0.50	ug/l
107-06-2	1,2-Dichloroethane	ND	0.50	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	0.50	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	0.50	ug/l
74-83-9	Methyl bromide	ND	0.50	ug/l
74-87-3	Methyl chloride	ND	0.50	ug/l
71-55-6	1,1,1-Trichloroethane	ND	0.50	ug/l
127-18-4	Tetrachloroethylene	ND	0.50	ug/l
108-88-3	Toluene	ND	0.50	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.5	ug/l
	m, p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
				-

CAS No.	Surrogate Recoveries		Limits
17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	91% 97% 104% 98%	72-122% 68-124% 80-119% 72-126%

Page 1 of 1

Method: SW846 8260C

Blank Spike/Blank Spike Duplicate Summary

Job Number: TD8565

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
VX3332-BS	X01239709.D	1	09/07/17	EM	n/a	n/a	VX3332
VX3332-BSD ^a	X01239710.D	1	09/07/17	EM	n/a	n/a	VX3332

The QC reported here applies to the following samples:

TD8565-1, TD8565-2, TD8565-3, TD8565-4, TD8565-5, TD8565-6, TD8565-7, TD8565-8, TD8565-9, TD8565-10, TD8565-11, TD8565-12, TD8565-13, TD8565-14

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
CAS NO.	Compound	ug/1	ug/1	/0	ug/1	/0	KI D	Kec/Ki D
71-43-2	Benzene	25	22.5	90	24.0	96	6	68-119/30
75-27-4	Bromodichloromethane	25	23.0	92	24.8	99	8	72-118/30
67-66-3	Chloroform	25	21.2	85	22.2	89	5	73-122/30
75-34-3	1,1-Dichloroethane	25	23.1	92	24.6	98	6	72-121/30
75-35-4	1,1-Dichloroethylene	25	23.2	93	25.4	102	9	67-140/30
107-06-2	1,2-Dichloroethane	25	22.3	89	23.7	95	6	68-121/30
156-59-2	cis-1,2-Dichloroethylene	25	21.7	87	23.1	92	6	72-117/30
156-60-5	trans-1,2-Dichloroethylene	25	23.1	92	24.8	99	7	68-124/30
74-83-9	Methyl bromide	25	23.1	92	24.4	98	5	53-138/30
74-87-3	Methyl chloride	25	18.1	72	19.7	79	8	50-145/30
71-55-6	1,1,1-Trichloroethane	25	23.4	94	24.6	98	5	72-129/30
127-18-4	Tetrachloroethylene	25	24.0	96	25.5	102	6	72-132/30
108-88-3	Toluene	25	22.0	88	23.6	94	7	73-119/30
79-01-6	Trichloroethylene	25	23.2	93	24.9	100	7	73-121/30
75-69-4	Trichlorofluoromethane	25	22.6	90	24.5	98	8	46-152/30
75-01-4	Vinyl chloride	25	19.4	78	20.2	81	4	54-126/30
1330-20-7	Xylene (total)	75	69.3	92	73.4	98	6	74-119/30
	m,p-Xylene	50	46.7	93	49.4	99	6	74-119/30
95-47-6	o-Xylene	25	22.6	90	24.0	96	6	73-121/30

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
1868-53-7	Dibromofluoromethane	94%	94%	72-122%
17060-07-0	1,2-Dichloroethane-D4	97%	99%	68-124%
2037-26-5	Toluene-D8	101%	101%	80-119%
460-00-4	4-Bromofluorobenzene	100%	100%	72-126%

(a) AZ:Q9

^{* =} Outside of Control Limits.

Section 6

General Chemistry

QC Data Summaries

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries

METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TD8565 Account: CRAAZP - GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Alkalinity, Bicarbonate	GN84320	5.0	2.0	mg/l				
Alkalinity, Carbonate	GN84321	5.0	0.0	mg/l				
Alkalinity, Total as CaCO3	GN84319	5.0	0.0	mg/l	100	93.0	93.0	90-100%
Alkalinity, Total as CaCO3	GN84319			mg/l	100	93.0	93.0	90-100%
Chloride	GP43966/GN84333	0.50	0.0	mg/l	10	9.83	98.3	90-110%
Fluoride	GP43966/GN84333	0.50	0.0	mg/l	10	9.87	98.7	90-110%
Nitrogen, Nitrate	GP43966/GN84333	0.50	0.0	mg/l	10	9.67	96.7	90-110%
Nitrogen, Nitrite	GP43966/GN84333	0.50	0.0	mg/l	10	9.99	99.9	90-110%
Phosphate, Ortho	GP43961/GN84326	0.020	0.0	mg/l	0.4	0.41	102.0	91-108%
Solids, Total Dissolved	GN84307	10	0.0	mg/l	500	496	99.2	88-110%
Sulfate	GP43966/GN84333	0.60	0.0	mg/l	10	10.1	101.0	90-110%

Associated Samples: Batch GN84307: TD8565-1, TD8565-15 Batch GN84319: TD8565-1, TD8565-15 Batch GN84320: TD8565-1, TD8565-15 Batch GN84321: TD8565-1, TD8565-15

Batch GP43961: TD8565-15 Batch GP43966: TD8565-15 (*) Outside of QC limits

DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TD8565

Account: CRAAZP - GHD Services Inc.
Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
Chloride	GP43966/GN84333	TD8565-15	mg/l	319	317	0.6	0-20%
Fluoride	GP43966/GN84333	TD8565-15	mg/l	0.61	0.62	1.6	0-20%
Nitrogen, Nitrate	GP43966/GN84333	TD8565-15	mg/l	6.4	6.1	4.8	0-20%
Nitrogen, Nitrite	GP43966/GN84333	TD8565-15	mg/l	0.0	0.0	0.0	0-20%
Phosphate, Ortho	GP43961/GN84326	TD8577-1	mg/l	7.6	7.7	1.5	0-20%
Solids, Total Dissolved	GN84307	TD8481-1	mg/l	2250	2240	0.4	0-5%
Sulfate	GP43966/GN84333	TD8565-15	mq/l	266	262	1.5	0-20%

Associated Samples: Batch GN84307: TD8565-1, TD8565-15 Batch GP43961: TD8565-15

Batch GP43966: TD8565-15 (*) Outside of QC limits

MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TD8565

Account: CRAAZP - GHD Services Inc.
Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Chloride	GP43966/GN84333	TD8565-15	mg/l	319	500	894	115.0	80-120%
Fluoride	GP43966/GN84333	TD8565-15	mg/l	0.61	10	11.5	108.9	80-120%
Nitrogen, Nitrate	GP43966/GN84333	TD8565-15	mg/l	6.4	10	15.9	95.0	80-120%
Nitrogen, Nitrite	GP43966/GN84333	TD8565-15	mg/l	0.0	10	10.0	100.0	80-130%
Phosphate, Ortho	GP43961/GN84326	TD8577-1	mg/l	7.6	32.0	38.8	97.6	83-108%
Sulfate	GP43966/GN84333	TD8565-15	mg/l	266	500	766	100.0	80-120%

Associated Samples: Batch GP43961: TD8565-15 Batch GP43966: TD8565-15 (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

Section 7

Cust	ody Documents and Other Forms
(SGS	Accutest Lafayette)

• Chain of Custody

			a namen se se		CHAIN	1 O	F C	UST	'OI	DY	7				FED-EX	Yracking #					Bottle C	Pa(ge 1	of 2	
	.,,	AGU	UTEST		10165 Ha TEL: 713-										SGS Acc	utest Quo	te #				SGS A	ocutest Job		3565	
		Client / Reporting Information	1				v.sgs.com					+			-			A 1	1- (- 3	- TEC	T COD	E sheet			Matrix Codes
	Compan		Project Name:	:	Project I	intorma	ition					1				Regi	dested	Anaiys	is (se	6 153	T	Estieet	,	\neg	Watth Codes
	SGS Street A	B Accutest	0	52nd Str	eet Superfund	Site - (OU2 Are	a, Phoe	nix, /	AZ					,K,MG				00000000000000000000000000000000000000						DW - Drinking Wate GW - Ground Wate WW - Water
	City Hou Project 0	65 Harwin Drive State Zip uston TX 77036	City Project #	:	State	Billing I Compan Street A		n (if diffe	rent f	from F	leport	to)			CUMS, FEMS, HG,	VOLUME TO THE PARTY OF THE PART			Control in the state of the sta			ANALAMA BANKA DEPARTMENTARIO LERVESTORIO		Andreas and a security of the second of the	SW - Surface Water SO - Soil SL- Sludge SED-Sediment OI - Oil LIQ - Other Liquid AIR - Air
	Phone #	<u> </u>	Client Purchase (Order#		City			***********	State			Zip	******	CDMS.				0.00						SOL - Other Solid WP - Wipe FB-Field Blank
			Project Manager			Attention	n:								IS CA		ET ,MG		of the state of th						EB-Equipment Blan RB- Rinse Blank TB-Trip Blank
			 		Collection	!	T	Τ	Т	Num	ber of	preserv	ed Bott	des	BAN S,SE		RME		1						
	SGS Accutest Sample #	Field ID / Point of Collection	MEOH/DI Vial#	Date	Time	Sampled by	Matrix	₽ of battle:	HCI	NaOH	H2SO4	MOME	DI Water MEOH	ENCORE	ASMS ,B ,BAMS ,CA ,CDMS ,NA ,PBMS ,SEMS ,ZNMS ,	В,	CA ,FILTERMET	CA,MG,	and the state of t						LAB USE ONLY
	1	PS-090517-MM-01		9/5/17	10:20:00 AM	4	AQ	1)	<	П						Х							
٠.	15	PS-090517-MM-15		9/5/17	12:18:00 PM	1	AQ	1		7		Ш			Х					, ,				1	1 / 1
1	15E-	PS-090517-MM-15		9/5/17	12:18:00 PM	4	AQ		+	 	4	HH		++	+	 	-		97	7/	17				
, .	16	PS-090517-MM-16		9/5/17	12:05:00 PM	4	AQ	1			K			П		Х			- Contraction						- Company
	17	PS-090517-MM-17		9/5/17	12:40:00 PM	1	AQ	1	\Box	1	X	Ш	1	\Box		X	†		1	Ì					17
							†		Н	H	T		\dagger	H		_			c decide						
				-						П	1	Ш	T	П								T			
				:		1		\vdash	\top	\Box		m	1	\vdash	1				1						
	<u> </u>		-			1	-	-	-	\vdash	+	HH	+	$^{++}$	+	 		 		 	-	+		+	
	<u> </u>			:		 			+	\vdash	+-	₩	+	++	+-	-	+	-	1	-	+	+			
	-						<u> </u>		-	1	+	Ш	+			ļ	-		- 3	-	-	-	\vdash		<u> </u>
					1					Ш		Ш		$\perp \downarrow$		<u> </u>									
													İ				1		188	l					1 -
		Turnaround Time (Business days)								iverat		14								Cor	nments	/ Specia	Instruction	าร	
		Std. 10 Business Days 5 Day RUSH 3 Day EMERGENCY	Approved By (SGS	Accutest PM): / Dat	e;		Comment Comment FULLT1 NJ Redu	ciał "B" ((Level 34	Level			Ē	NYAS State				*	UNP	RESE LAL	ge V© 3, ∧	0 B NO S	OTTLE AMPL	E WAS IE Res	CON NANN.	sumos :
		2 Day EMERGENCY					Commer	cial "C"				X	Other	CON	/MB		4		4	21	07	7			
		1 Day EMERGENCY						Comme				17.							į	ノい		~			
	Em	other Due 9/13/2017 ergency & Rush T/A data available VIA Lablink						Commer NJ Redu							ial Raw da	ta									
					tody must be o	locume	nted belo		ime s	samp	les ch	nange					rier del				1				
	Relir 1	nquished by Sampler: 5 Fame 5 9	7-17	Received By: 1 565-	72		7-1		Reli 2	linquist S		\$-	7	×				Date Tir	ne: 7 -	7	2		lma	r A	Les .
	Retail	equished by Sampler: (1) BSte J	ime: 12:00	Received By:	Lill		9-8-17 7:30	7	Rel	linguist نا	æd By:	:						Date Yii	ne:		Recei	ived By:			
	Retir	nquished by: Date 3	ime:	Received Ey:						stody S	ieal#				Tritact Not into	d	Preserv	ed where	applicabl	e			On Ice	/ ₋ 5	Op 439

TD8565: Chain of Custody Page 1 of 3 SGS Accutest Lafayette Date / Time: 9/6/2017 1:11:34 PM

CSR: ANITAP

Job #: TD8565

Client Project: 52nd Street Superfund Site - OU2 Area, Phoenix, A

Deliverable: COMMB

TAT: Due 9/13/2017

Sub Lab; Accutest Gulf Coast Louisiana Address 500 Ambassador Caffery Prkway

City: Scott

Zip: 70583

State: LA Contact: Sample Receiving

Phone: 800-304-5227

				10-1-1	15-1-	Time	
SGS Accutest Sample #	Client Sample Description	n Analysis	Location	Sampled By	Date Sampled	Sampled	Aliquot
TD8565-1	PS-090517-MM-01		3J_SUB_VR_		9/5/2017	10:20:00 AM	
TD8565-15	<u>PS-090517-MM-15</u>	ASMS B BAMS CA CDMS CUMS FEMS HG K MG NA PBMS SEMS ZNMS	1K ,3J ,SUB .		<u>9/5/2017</u>	12:18:00 PM	
TD8565-15F	PS-090517-MM-15	CA FILTERMET MN			<u>9/5/2017</u>	12:18:00 PM	
TD8565-16	PS-090517-MM-16	<u>B.</u> .	SUB.		<u>9/5/2017</u>	12:05:00 PM	
TD8565-17	PS-090517-MM-17	<u>B.</u>	SUB.		<u>9/5/2017</u>	12:40:00 PM	
Comments	5:						
Sample Manag	gement Receipt:		Date:				
		1= 250 ml	niffic 3	WZ	**************************************	, Tun	

TD8565: Chain of Custody

Page 2 of 3

SGS Accutest Sample Receipt Summary

Job Number: T	D8565		Client: SGS	S (TX)			Project: SUPERFUND	SITE		
Date / Time Received: 9/	/8/2017 7	′:30:00 AN	1 Deli	ivery Method	: Ac	cutest Courier	Airbill #'s:			
Cooler Temps (Initial/Adju	sted): ±	<u>‡1: (1.5/1.5</u>	5); DV439							
Cooler Security	Y or I	<u>N</u>		<u>Y</u> o	<u>r N</u>	Sample Integri	ity - Documentation	<u>Y</u>	or N	
odotody oddio i rodonti		_	COC Present			1. Sample labels	s present on bottles:	✓		
2. Custody Seals Intact:	✓	4. Sn	npl Dates/Time	e OK 🔽		2. Container lab	eling complete:	✓		
Cooler Temperature	<u>_Y</u>	or N				3. Sample conta	iner label / COC agree:	✓		
1. Temp criteria achieved:	✓					Sample Integr	rity - Condition	<u>Y</u>	or N	
2. Thermometer ID:		DV439;				Sample recvd		✓		
3. Cooler media:	lce (direct conta	ict)			All containers				
4. No. Coolers:		1				3. Condition of s	sample:		ntact	
Quality Control Preservat	<u>ion Y</u>	or N	N/A			Sample Integr	rity - Instructions	Υ	or N	N/A
1. Trip Blank present / cooler:	: 🗆		✓			Analysis requ		<u>·</u>		
2. Trip Blank listed on COC:			✓				ved for unspecified tests		✓	
3. Samples preserved properl	ly:						ume recvd for analysis:	<u> </u>		
4. VOCs headspace free:			✓				instructions clear:	П		✓
						5. Filtering instr	ructions clear:			✓
Comments						•				

TD8565: Chain of Custody Page 3 of 3

Section 8

Metals Analysis

QC Data Summaries

(SGS Accutest Lafayette)

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: TD8565

Account: ALGC - SGS Accutest Gulf Coast Project: CRAAZP: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

QC Batch ID: MP9078 Methods: EPA 200.7 Matrix Type: AQUEOUS Units: ug/l

Prep Date:

09/08/17

Metal	RL	IDL	MDL	MB raw	final
Aluminum	100	14	24		
Antimony	6.0	1.4	3.3		
Arsenic	10	1.9	3.2		
Barium	10	.21	.9		
Beryllium	4.0	.05	.8		
Boron	100	.95	3.7	1.5	<100
Cadmium	5.0	.13	.6		
Calcium	100	5.1	11	-9.5	<100
Chromium	10	. 29	1.2		
Cobalt	10	.15	.7		
Copper	10	.43	2.9		
Iron	100	2.8	14		
Lead	10	.9	2.6		
Magnesium	100	18	39	-3.2	<100
Manganese	10	.05	.6		
Molybdenum	10	.15	.7		
Nickel	10	. 3	1.2		
Potassium	500	25	33	58.5	<500
Selenium	10	1.7	4.2		
Silver	10	.32	1		
Sodium	500	6.5	72	-39	<500
Strontium	10	.09	.6		
Thallium	5.0	1.3	2.5		
Tin	10	.76	.7		
Titanium	10	.46	1		
Vanadium	10	.33	1.6		
Zinc	20	.63	4		
Lithium	10	1.1	5.6		

Associated samples MP9078: TD8565-1, TD8565-15, TD8565-16, TD8565-17

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\dot{\ }$

(anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: TD8565 Account: ALGC - SGS Accutest Gulf Coast

Project: CRAAZP: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

QC Batch ID: MP9078 Methods: EPA 200.7 Matrix Type: AQUEOUS Units: ug/l

09/08/17 Prep Date:

Metal	LA36878- Original		Spikelot ICPSPIKE		QC Limits
Aluminum					
Antimony					
Arsenic					
Barium					
Beryllium					
Boron	127	1030	1000	90.3	70-130
Cadmium					
Calcium	340000	361000	1000	-100.0(a	70-130
Chromium					
Cobalt					
Copper	anr				
Iron	anr				
Lead					
Magnesium	10700	12100	1000	100.0	70-1
Manganese					
Molybdenum					
Nickel	anr				
Potassium	27300	37800	10000	105.0	70-1
Selenium					
Silver					
Sodium	4220000	4430000	10000	2100.0(a	70-130
Strontium					
Thallium					
Tin					
Titanium					
Vanadium					
Zinc	anr				
Lithium					

Associated samples MP9078: TD8565-1, TD8565-15, TD8565-16, TD8565-17

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

- (N) Matrix Spike Rec. outside of QC limits
- (anr) Analyte not requested
- (a) Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: TD8565 Account: ALGC - SGS Accutest Gulf Coast

Project: CRAAZP: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

QC Batch ID: MP9078 Methods: EPA 200.7 Matrix Type: AQUEOUS Units: ug/l

Prep Date:

09/08/17

Metal	LA36878- Original		Spikelot ICPSPIKE		MSD RPD	QC Limit
Aluminum						
Antimony						
Arsenic						
Barium						
Beryllium						
Boron	127	1020	1000	89.3	1.0	20
Cadmium						
Calcium	340000	365000	1000	300.0(a)	1.1	20
Chromium						
Cobalt						
Copper	anr					
Iron	anr					
Lead						
Magnesium	10700	12300	1000	120.0	1.6	20
Manganese						
Molybdenum						
Nickel	anr					
Potassium	27300	39000	10000	117.0	3.1	20
Selenium						
Silver						
Sodium	4220000	4210000	10000	-100.0(a	5.1	20
Strontium						
Thallium						
Tin						
Titanium						
Vanadium						
Zinc	anr					
Lithium						

Associated samples MP9078: TD8565-1, TD8565-15, TD8565-16, TD8565-17

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

- (N) Matrix Spike Rec. outside of QC limits
- (anr) Analyte not requested
- (a) Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: TD8565 Account: ALGC - SGS Accutest Gulf Coast

Project: CRAAZP: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

QC Batch ID: MP9078 Methods: EPA 200.7 Matrix Type: AQUEOUS Units: ug/1

Prep Date: 09/08/17

Metal	BSP Result	Spikelot ICPSPIKE		QC Limits
Aluminum				
Antimony				
Arsenic				
Barium				
Beryllium				
Boron	927	1000	92.7	85-115
Cadmium				
Calcium	1080	1000	108.0	85-115
Chromium				
Cobalt				
Copper	anr			
Iron	anr			
Lead				
Magnesium	1070	1000	107.0	85-115
Manganese				
Molybdenum				
Nickel	anr			
Potassium	10800	10000	108.0	85-115
Selenium				
Silver				
Sodium	10700	10000	107.0	85-115
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc	anr			
Lithium				

Associated samples MP9078: TD8565-1, TD8565-15, TD8565-16, TD8565-17

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\dot{\ }$

(anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: TD8565 Account: ALGC - SGS Accutest Gulf Coast

Project: CRAAZP: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

QC Batch ID: MP9078 Methods: EPA 200.7 Matrix Type: AQUEOUS Units: ug/l

09/08/17 Prep Date:

Metal	LA36878- Original	1 SDL 1:5	%DIF	QC Limits
Aluminum				
Antimony				
Arsenic				
Barium				
Beryllium				
Boron	166	129	1.4	0-10
Cadmium				
Calcium	340000	311000	14.2*(a)	0-10
Chromium				
Cobalt				
Copper	anr			
Iron	anr			
Lead				
Magnesium	10700	9410	15.4*(a)	0-10
Manganese				
Molybdenum				
Nickel	anr			
Potassium	27300	22000	19.6*(a)	0-10
Selenium				
Silver				
Sodium	4220000	4400000	4.3	0-10
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc	anr			
Lithium				

Associated samples MP9078: TD8565-1, TD8565-15, TD8565-16, TD8565-17

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(anr) Analyte not requested

(a) Serial dilution indicates possible matrix interference.

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: TD8565

Account: ALGC - SGS Accutest Gulf Coast Project: CRAAZP: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

QC Batch ID: MP9082 Methods: EPA 200.8 Matrix Type: AQUEOUS Units: ug/l

Prep Date:

09/08/17

Trop bacc					037 007 17
Metal	RL	IDL	MDL	MB raw	final
Aluminum	100	2.6	13		
Antimony	5.0	.0059	.81		
Arsenic	4.0	.011	.29	-0.091	<4.0
Barium	5.0	.035	.32	-0.020	<5.0
Beryllium	2.0	.0037	.13		
Boron	20	4	4.9		
Cadmium	2.0	.0042	.33	-0.022	<2.0
Calcium	200	1.8	36		
Chromium	4.0	.013	.2		
Cobalt	2.0	.0022	.13		
Copper	2.0	.012	.49	-0.36	<2.0
Iron	100	.71	19	-52	<100
Lithium	2.0	.081	.95		
Lead	1.0	.0035	.31	-0.072	<1.0
Magnesium	100	.42	17		
Manganese	2.0	.01	.17		
Molybdenum	2.0	.092	.44		
Nickel	2.0	.28	.19		
Potassium	100	1.1	15		
Selenium	5.0	.13	1.9	-0.051	<5.0
Silver	1.0	.002	.46		
Sodium	100	2.3	32		
Strontium	2.0	.0054	.2		
Thallium	2.0	.015	.39		
Tin	4.0	.011	.63		
Titanium	2.0	.022	.8		
Uranium	1.0	.0045	.58		
Vanadium	10	.0077	.28		
Zinc	6.0	.067	5.1	-0.41	<6.0

Associated samples MP9082: TD8565-15

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: TD8565 Account: ALGC - SGS Accutest Gulf Coast Project: CRAAZP: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

QC Batch ID: MP9082 Methods: EPA 200.8 Matrix Type: AQUEOUS Units: ug/l

Prep Date:

09/08/17

Prep Date:				09/08/17	
Metal	TD8590- Origina		Spikelot MPICPMS5		QC Limits
Aluminum	anr				
Antimony	anr				
Arsenic	4.4	104	100	99.6	70-130
Barium	53.3	158	100	104.7	70-130
Beryllium	anr				
Boron					
Cadmium	0.068	97.2	100	97.1	70-130
Calcium					
Chromium	anr				
Cobalt					
Copper	2.1	96.1	100	94.0	70-130
Iron	176	5220	5000	100.9	70-130
Lithium					
Lead	1.3	101	100	99.7	70-130
Magnesium					
Manganese					
Molybdenum					
Nickel	anr				
Potassium					
Selenium	0.42	510	500	101.9	70-130
Silver	anr				
Sodium					
Strontium					
Thallium	anr				
Tin					
Titanium					
Uranium					
Vanadium					
Zinc	15.2	106	100	90.8	70-130

Associated samples MP9082: TD8565-15

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: TD8565

Account: ALGC - SGS Accutest Gulf Coast
Project: CRAAZP: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

QC Batch ID: MP9082 Methods: EPA 200.8 Matrix Type: AQUEOUS Units: ug/l

Prep Date:

09/08/17

TTCP Date					03,00,1,	
Metal	TD8590-1 Original		Spikelot MPICPMS5	% Rec	MSD RPD	QC Limit
Aluminum	anr					
Antimony	anr					
Arsenic	4.4	102	100	97.6	1.9	20
Barium	53.3	156	100	102.7	1.3	20
Beryllium	anr					
Boron						
Cadmium	0.068	94.5	100	94.4	2.8	20
Calcium						
Chromium	anr					
Cobalt						
Copper	2.1	94.6	100	92.5	1.6	20
Iron	176	5130	5000	99.1	1.7	20
Lithium						
Lead	1.3	99.1	100	97.8	1.9	20
Magnesium						
Manganese						
Molybdenum						
Nickel	anr					
Potassium						
Selenium	0.42	500	500	99.9	2.0	20
Silver	anr					
Sodium						
Strontium						
Thallium	anr					
Tin						
Titanium						
Uranium						
Vanadium						
Zinc	15.2	105	100	89.8	0.9	20

Associated samples MP9082: TD8565-15

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: TD8565 Account: ALGC - SGS Accutest Gulf Coast

Project: CRAAZP: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

QC Batch ID: MP9082 Methods: EPA 200.8 Matrix Type: AQUEOUS Units: ug/l

09/08/17

Prep Date:

Prep Date:			09/00/17	
Metal	BSP Result	Spikelot MPICPMS5	% Rec	QC Limits
Aluminum	anr			
Antimony	anr			
Arsenic	103	100	103.0	85-115
Barium	103	100	103.0	85-115
Beryllium	anr			
Boron				
Cadmium	99.4	100	99.4	85-115
Calcium				
Chromium	anr			
Cobalt				
Copper	100	100	100.0	85-115
Iron	5170	5000	103.4	85-115
Lithium				
Lead	104	100	104.0	85-115
Magnesium				
Manganese				
Molybdenum				
Nickel	anr			
Potassium				
Selenium	521	500	104.2	85-115
Silver	anr			
Sodium				
Strontium				
Thallium	anr			
Tin				
Titanium				
Uranium				
Vanadium				
Zinc	98.8	100	98.8	85-115

Associated samples MP9082: TD8565-15

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: TD8565 Account: ALGC - SGS Accutest Gulf Coast

Project: CRAAZP: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

QC Batch ID: MP9082 Methods: EPA 200.8 Matrix Type: AQUEOUS Units: ug/1

Prep Date: 09/08/17

Prep Date.			09/06/17	
Metal	TD8590-1 Original	SDL 1:5	%DIF	QC Limits
Aluminum	anr			
Antimony	anr			
Arsenic	4.37	3.81	12.9*(a)	0-10
Barium	53.3	53.9	1.2	0-10
Beryllium	anr			
Boron				
Cadmium	0.0679	0.00	100.0(b)	0-10
Calcium				
Chromium	anr			
Cobalt				
Copper	2.11	1.24	41.0*(a)	0-10
Iron	176	0.00	100.0*(a	0-10
Lithium				
Lead	1.34	0.888	33.9*(a)	0-10
Magnesium				
Manganese				
Molybdenum				
Nickel	anr			
Potassium				
Selenium	0.424	0.00	100.0(b)	0-10
Silver	anr			
Sodium				
Strontium				
Thallium	anr			
Tin				
Titanium				
Uranium				
Vanadium				
Zinc	15.2	11.9	21.8*(a)	0-10

Associated samples MP9082: TD8565-15

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(anr) Analyte not requested

(a) Serial dilution indicates possible matrix interference.

⁽b) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: TD8565

Account: ALGC - SGS Accutest Gulf Coast Project: CRAAZP: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

QC Batch ID: MP9086 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/l

Prep Date:

09/08/17

Metal	RL	IDL	MDL	MB raw	final
Mercury	0.20	.032	.066	-0.037	<0.20

Associated samples MP9086: TD8565-15

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\begin{tabular}{ll} \end{tabular}$

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: TD8565

Account: ALGC - SGS Accutest Gulf Coast
Project: CRAAZP: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

QC Batch ID: MP9086 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/l

09/08/17 Prep Date:

Metal	LA36872 Origina		Spikelo HGSPIKE	t 1 % Rec	QC Limits
Mercury	0.0	5.0	5	100.0	70-130

Associated samples MP9086: TD8565-15

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\hfill \hfill$

(N) Matrix Spike Rec. outside of QC limits

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: TD8565

Account: ALGC - SGS Accutest Gulf Coast
Project: CRAAZP: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

QC Batch ID: MP9086 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/l

Prep Date:

09/08/17

Metal	LA36872 Origina		Spikel HGSPIK	ot E1 % Rec	MSD RPD	QC Limit
Mercury	0.0	4.9	5	98.0	2.0	20

Associated samples MP9086: TD8565-15

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\hfill \hfill$

(N) Matrix Spike Rec. outside of QC limits

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: TD8565

Account: ALGC - SGS Accutest Gulf Coast Project: CRAAZP: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

QC Batch ID: MP9086 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/l

09/08/17 Prep Date:

Metal	BSP Result	Spikelot HGSPIKE1		QC Limits
Mercury	4.9	5	98.0	85-115

Associated samples MP9086: TD8565-15

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\bar{\ }$

.3.4

SERIAL DILUTION RESULTS SUMMARY

Login Number: TD8565

Account: ALGC - SGS Accutest Gulf Coast Project: CRAAZP: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

QC Batch ID: MP9086 Methods: EPA 245.1

Matrix Type: AQUEOUS Units: ug/l

Prep Date: 09/08/17

Associated samples MP9086: TD8565-15

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\bar{\ }$

(*) Outside of QC limits (anr) Analyte not requested

ACCUTEST Gulf Coast

09/18/17

SGS ACCUTEST IS PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.

e-Hardcopy 2.0 **Automated Report**

Technical Report for

GHD Services Inc.

52nd Street Superfund Site - OU2 Area, Phoenix, AZ

013932-130

SGS Accutest Job Number: TD8747

Sampling Dates: 09/06/17 - 09/08/17

GHD Services Inc.

4747 N. 22nd Street Second Floor

Phoenix, AZ 85016

manfred.plaschke@ghd.com; mary.cameron@ghd.com;

sheri.finn@ghd.com ATTN: Manfred Plaschke

Total number of pages in report: 22

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Anita Patel 713-271-4700

Certifications: TX (T104704220-17-27) AR (14-016-0) AZ (AZ0769) FL (E87628) KS (E-10366) LA (85695/04004) NJ (TX010) OK (2017-002) VA (8999)

This report shall not be reproduced, except in its entirety, without the written approval of SGS Accutest. Test results relate only to samples analyzed.

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits 4	ļ
Section 3: Sample Results 5	,
3.1: TD8747-1: GW-090617-PG-01	5
3.2: TD8747-2: GW-090617-PG-02	7
3.3: TD8747-3: GW-090717-PG-03	}
3.4: TD8747-4: GW-090817-PG-04)
3.5: TD8747-5: GW-090817-PG-05	0
3.6: TD8747-6: GW-090817-PG-06	1
3.7: TD8747-7: GW-090817-PG-07	2
3.8: TD8747-8: TRIP BLANK	3
Section 4: Misc. Forms	4
4.1: Arizona Qualifiers	5
4.2: Chain of Custody	
Section 5: MS Volatiles - QC Data Summaries	
5.1: Method Blank Summary	
5.2: Blank Spike/Blank Spike Duplicate Summary	

Sample Summary

GHD Services Inc.

Job No:

TD8747

52nd Street Superfund Site - OU2 Area, Phoenix, AZ Project No: 013932-130

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
TD8747-1	09/06/17	11:10	09/09/17	AQ	Ground Water	GW-090617-PG-01
TD8747-2	09/06/17	13:30	09/09/17	AQ	Ground Water	GW-090617-PG-02
TD8747-3	09/07/17	12:55	09/09/17	AQ	Ground Water	GW-090717-PG-03
TD8747-4	09/08/17	07:55	09/09/17	AQ	Ground Water	GW-090817-PG-04
TD8747-5	09/08/17	08:00	09/09/17	AQ	Ground Water	GW-090817-PG-05
TD8747-6	09/08/17	13:00	09/09/17	AQ	Ground Water	GW-090817-PG-06
TD8747-7	09/08/17	13:20	09/09/17	AQ	Ground Water	GW-090817-PG-07
TD8747-8	09/06/17	00:00	09/09/17	AQ	Trip Blank Water	TRIP BLANK

Summary of Hits Job Number: TD8747

Account: GHD Services Inc.

52nd Street Superfund Site - OU2 Area, Phoenix, AZ **Project:**

Collected: 09/06/17 thru 09/08/17

I ah Sample ID	Client Sample ID	Pocult/				
Analyte	Chefit Sample ID	Qual	RL	MDL	Units	Method
TD8747-1	GW-090617-PG-0	1				
No hits reported in this sample.						
TD8747-2	GW-090617-PG-0	2				
Tetrachloroethyle	ene	2.7	1.0		ug/l	SW846 8260C
TD8747-3	GW-090717-PG-0	3				
Trichloroethylene	e	0.82	0.50		ug/l	SW846 8260C
TD8747-4	GW-090817-PG-0	4				
Trichloroethylene		1.9	0.50		ug/l	SW846 8260C
TD8747-5	GW-090817-PG-0	5				
Trichloroethylene	e	1.9	0.50		ug/l	SW846 8260C
TD8747-6	GW-090817-PG-0	6				
Xylene (total) m,p-Xylene		1.8 1.4	1.0 1.0		ug/l ug/l	SW846 8260C SW846 8260C
TD8747-7	GW-090817-PG-0	7				
Tetrachloroethylen		1.6 3.4	1.0 0.50		ug/l ug/l	SW846 8260C SW846 8260C
TD 0747 0	TOID DI ANIZ					

TD8747-8 TRIP BLANK

No hits reported in this sample.

Section 3 &

Client Sample ID: GW-090617-PG-01

 Lab Sample ID:
 TD8747-1
 Date Sampled:
 09/06/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/09/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 G0276348.D 1 09/14/17 23:32 ZQ n/a n/a VG2456
Run #2

Run #1 5.0 ml
Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane a	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m, p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	102%		72-122%
17060-07-0	1,2-Dichloroethane-D4	102%		68-124%
2037-26-5	Toluene-D8	103%		80-119%
460-00-4	4-Bromofluorobenzene	96%		72-126%

(a) CCV recovery was above method acceptance criteria. This target analyte was not detected in the sample. AZ:V1

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

SGS

Client Sample ID: GW-090617-PG-02

 Lab Sample ID:
 TD8747-2
 Date Sampled:
 09/06/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/09/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 G0276349.D 1 09/14/17 23:56 ZQ n/a n/a VG2456
Run #2

Purge Volume
Run #1 5.0 ml
Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	2.7	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane a	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	103%		72-122%
17060-07-0	1,2-Dichloroethane-D4	103%		68-124%
2037-26-5	Toluene-D8	102%		80-119%
460-00-4	4-Bromofluorobenzene	97%		72-126%

(a) CCV recovery was above method acceptance criteria. This target analyte was not detected in the sample. AZ:V1

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

SGS

Client Sample ID: GW-090717-PG-03

 Lab Sample ID:
 TD8747-3
 Date Sampled:
 09/07/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/09/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 G0276350.D 1 09/15/17 00:21 ZQ n/a n/a VG2456
Run #2

Run #1 5.0 ml Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	0.82	0.50	ug/l
75-69-4	Trichlorofluoromethane a	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	102%		72-122%
17060-07-0	1,2-Dichloroethane-D4	103%		68-124%
2037-26-5	Toluene-D8	102%		80-119%
460-00-4	4-Bromofluorobenzene	96%		72-126%

(a) CCV recovery was above method acceptance criteria. This target analyte was not detected in the sample. AZ:V1

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

SGS

Page 1 of 1

Client Sample ID: GW-090817-PG-04

Lab Sample ID: TD8747-4 **Date Sampled:** 09/08/17 Matrix: AQ - Ground Water **Date Received:** 09/09/17 Method: SW846 8260C **Percent Solids:** n/a

52nd Street Superfund Site - OU2 Area, Phoenix, AZ **Project:**

File ID DF **Prep Batch Analytical Batch** Analyzed By **Prep Date** Run #1 G0276351.D 1 09/15/17 00:46 ZQ n/a VG2456 n/aRun #2

Purge Volume Run #1 5.0 ml Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1, 1, 1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	1.9	0.50	ug/l
75-69-4	Trichlorofluoromethane a	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CACN	G 4 D .	D #1	D #2	T * */
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	102%		72-122%
17060-07-0	1,2-Dichloroethane-D4	103%		68-124%
2037-26-5	Toluene-D8	102%		80-119%
460-00-4	4-Bromofluorobenzene	96%		72-126%

(a) CCV recovery was above method acceptance criteria. This target analyte was not detected in the sample. AZ:V1

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ACCUTEST

Client Sample ID: GW-090817-PG-05

Lab Sample ID: TD8747-5 **Date Sampled:** 09/08/17 Matrix: AQ - Ground Water **Date Received:** 09/09/17 Method: SW846 8260C Percent Solids: n/a

52nd Street Superfund Site - OU2 Area, Phoenix, AZ **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 G0276352.D 1 09/15/17 01:10 ZQ n/a n/a VG2456 Run #2

Purge Volume Run #1 5.0 ml Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	1.9	0.50	ug/l
75-69-4	Trichlorofluoromethane a	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	102%		72-122%
17060-07-0	1,2-Dichloroethane-D4	102%		68-124%
2037-26-5	Toluene-D8	103%		80-119%
460-00-4	4-Bromofluorobenzene	97%		72-126%

(a) CCV recovery was above method acceptance criteria. This target analyte was not detected in the sample. AZ:V1

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ACCUTEST

ND = Not detected

E = Indicates value exceeds calibration range

Page 1 of 1

Report of Analysis

Client Sample ID: GW-090817-PG-06

Lab Sample ID: TD8747-6 **Date Sampled:** 09/08/17 Matrix: AQ - Ground Water **Date Received:** 09/09/17 Method: SW846 8260C Percent Solids: n/a

52nd Street Superfund Site - OU2 Area, Phoenix, AZ **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 G0276353.D 1 09/15/17 01:34 ZQ n/an/a VG2456 Run #2

Purge Volume Run #1 5.0 ml Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane a	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	1.8	1.0	ug/l
	m,p-Xylene	1.4	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	102%		72-122%
17060-07-0	1,2-Dichloroethane-D4	102%		68-124%
2037-26-5	Toluene-D8	103%		80-119%
460-00-4	4-Bromofluorobenzene	97%		72-126%

(a) CCV recovery was above method acceptance criteria. This target analyte was not detected in the sample. AZ:V1

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ACCUTEST

Page 1 of 1

Client Sample ID: GW-090817-PG-07

 Lab Sample ID:
 TD8747-7
 Date Sampled:
 09/08/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/09/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 G0276354.D 1 09/15/17 01:58 ZQ n/a n/a VG2456
Run #2

Run #1 5.0 ml
Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	1.6	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	3.4	0.50	ug/l
75-69-4	Trichlorofluoromethane a	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	102%		72-122%
17060-07-0	1,2-Dichloroethane-D4	103%		68-124%
2037-26-5	Toluene-D8	102%		80-119%
460-00-4	4-Bromofluorobenzene	96%		72-126%

(a) CCV recovery was above method acceptance criteria. This target analyte was not detected in the sample. AZ:V1

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Client Sample ID: TRIP BLANK

 Lab Sample ID:
 TD8747-8
 Date Sampled:
 09/06/17

 Matrix:
 AQ - Trip Blank Water
 Date Received:
 09/09/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1G0276347.D109/14/17 23:08ZQn/an/aVG2456Run #2

Purge Volume
Run #1 5.0 ml
Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane a	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	102%		72-122%
17060-07-0	1,2-Dichloroethane-D4	102%		68-124%
2037-26-5	Toluene-D8	102%		80-119%
460-00-4	4-Bromofluorobenzene	96%		72-126%

(a) CCV recovery was above method acceptance criteria. This target analyte was not detected in the sample. AZ:V1

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

SGS

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- · Arizona Qualifiers
- Chain of Custody

Arizona Qualifiers

Page 1 of 1

Job Number: TD8747

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

The following Arizona qualifiers have been applied to data and/or QC in this report.

	·
Qual	Description
Q9	Insufficient sample received to meet method QC requirements.
V1	CCV recovery was above method acceptance limits. This target analyte was not detected in the sample.

PAGE _ OF _

P	1	10	E	N	IX

CHAIN OF CUSTODY

343	ACCI	JTEST		10165 Har	win Dr, S	te 150 Hou	iston, TX	77036	6				FED-	X Tracking #	1966	730	Bottle	e Order C	Control #		
				TEL. 71		00 FAX:		4770					SGS	Accutest Quote	#	110	SGS	Accutest	Job#	TD'	9747
Client / Reporting I	Information			Project	Informa				No. of	72.00					Ren	ueste	d An	alve		1	Matrix Cod
Company Name GH	D	Project Name:	042															l l			Wattix Cod
Street Address	+	Street									200								-		DW - Drinking V GW - Ground W
City State	Zip	City		State	Billing	Informationy Name	n (if diff	erent t	from R	eport to)							1			WW - Wate SW - Surface W SO - Soil
Project Contact M. PLASCH KE.	E-mail	Project#	3932 - 1	30	Street A	ddress							-			-		SAGA	ą		SL- Sludge SED-Sedime OI - Oil
Project Contact M. PLASCH KE. Phone #	Fax#	Client Purchase			City				State			Zip	1			ER		in the last	2		LIQ - Other Liq AIR - Air SOL - Other S
Sampler(s) Name(s) PATRICIL GREEN	Phone #	Project Manage	r	3745	Attention	n:							09			and the same of th		134	4		WP - Wipe FB-Field Blar
			Coll	ection					1	reserved E			00			(EI)		No.			
SGS Accutest Sample # Field ID / Po	oint of Collection	Date	Time	Sampled By	Matrix	# of bottles	HCI NaOH	ZA/NaOH HNO3	H2SO4 NONE	DI Water MEOH	TSP	NaHSO4 ENCORE	OTHEN			3		11			LAB USE ON
1 GW-090617	1-16-01	9/6	1110	PG	6W	3		8					X					1			
Z T T T 3 GW-090717	02	9/4	1330	1	1	3		Ž.			П		X					1			1 / 2 / 1
3 GW-090717	-PG - 03	9/7	1255			3		1			П		K			A	1	M	1		
1 GW- 09 0817	1-PG-04	9/8	0755			3		1			П		V			1		1	1		
5 1	1 05	1	0800			3			\vdash	+	Ħ	\top	1		-	10	1	71	H)	1	
4	06		1360			3	+++	100 E			H	+	X	+		W.	+	-	1	+	
7	07	1	1320	11		3				+	Н	+	X				+			+	
8480-1	BLANK		172		-	1	+	8			Н	++	V			-	-	-	-		
		1 70				-	4			+	Н		1		7.			+		+	
ψ To 2							++	1			Н	++	1				-			+	
The state of the s								8	\vdash		H		+				-	+			
76							\forall	4			,	++	-		_			+	-	++	
Turnaround Time (Business days)						Data	a Deliv	verable	Inform	ation	\perp					Comment	s / Spe	cial Instru	uctions	
Standard		Approved By (SGS	S Accutest PM): / Dat	e:		Commerc					TRE										
5 Day RUSH 4 Day RUSH						Commerce FULT1 (L			2)		ED Oth	D Forma	at	-							
3 Day RUSH						REDT1 (_] Ott	ner	_								
2 Day RUSH						Commerc		1												-	
1 Day EMERGENCY										Results				L							
Emergency & Rush T/A da	ta available VIA Lablink			Form: SM021	-0							Summar & Surrog		nmany							
2400		Sa	mple Custody r				n time s	ample	es cha	nge pos	ssess	sion, inc	luding	courier de	elivery.						
1 Volt. Uh	Date Time:	18/17 1403	1 Aby	y for	w	Date Time	7 14	0/2	(A)	hely	I	ocu	m		Q - Y	17 16	Pece 2	Fee	1 Ex		Date Time:
Relinquished by Sampler:	Date Time:		Restiver By	1 ala	117	Date Time	15	Reli	inquishe	d By:	0		/		Date Tir			ived By:			Date Time:
Relinquished by:	Date Time:		Received By:		1	Date Time		Cus	stody Se	al#			Intact		eserved wher	e applicable			On Ic	0	Cooler Temp? 5

TD8747: Chain of Custody

Page 1 of 4

TT-1397.#1	a				
	Corrected Temp, ⁰	KI		900:S1 YADAUTA2 THƏINAƏVO YTIAOIA9 ASCI FYOTT HAI su-xt	0571 9961 2077 1966 1730 X
COOLER TEMP FORM	PS ALGO PS ALG	SAMPLES CONTAINED IN COOLER		Searching Park State of the Sta	
ACSUTEST	de one);	ME COSTE	18 Bh		TO SAMPLE RECEIVING TO SAMPLE RECEIVING 10165 HARWIN DR. SUITE 150 HOUSTON TX 77071
****	Delivered by (circ Date:			BILL RECIPIENT AMPLES AND DATE: SHIP DATE:	ORIGIN ID-MSCA (480) 275-8931

TD8747: Chain of Custody

Page 2 of 4

SGS Accutest Sample Receipt Summary

Job Number: TD8	747	c	Client: GHD			Project: OU2			
Date / Time Received: 9/9/2	2017 10	:15:00 AM	Delivery	Method	:	Airbill #'s: 770219661730			
No. Coolers: 1	Ther	m ID: IR	-5;			Temp Adjustment Factor: 0;			
Cooler Temps (Initial/Adjust	ed): <u>#</u>	1: (2.5/2.5	i);_						
Cooler Security Y	or N	L		Υ (or N	Sample Integrity - Documentation	Υ_	or N	
1. Custody Seals Present:		_	COC Present:	\checkmark		Sample labels present on bottles:	~		
2. Custody Seals Intact:] 4. Sm	pl Dates/Time OK	✓		Container labeling complete:	✓		
Cooler Temperature	Υ	or N				3. Sample container label / COC agree:	~		
1. Temp criteria achieved:	\checkmark					Sample Integrity - Condition	<u>Y</u>	or N	
Cooler temp verification:						1. Sample recvd within HT:	✓		
3. Cooler media:	le	ce (Bag)				2. All containers accounted for:	✓		
Quality Control Preservatio	<u> Y</u>	or N	N/A	WTB	STB	3. Condition of sample:		Intact	
1. Trip Blank present / cooler:	\checkmark			\checkmark		Sample Integrity - Instructions	<u>Y</u>	or N	N/A
2. Trip Blank listed on COC:	✓					Analysis requested is clear:	✓		
2. Trip Blank listed on COC:3. Samples preserved properly:	✓					Analysis requested is clear: Bottles received for unspecified tests	✓	□ ✓	
·						1 ' '			
3. Samples preserved properly:	✓					Bottles received for unspecified tests		✓	V
3. Samples preserved properly:	✓					Bottles received for unspecified tests Sufficient volume recvd for analysis:	□		▽
3. Samples preserved properly:	✓					Bottles received for unspecified tests Sufficient volume recvd for analysis: Compositing instructions clear:	□✓□		
Samples preserved properly: VOCs headspace free:	✓					Bottles received for unspecified tests Sufficient volume recvd for analysis: Compositing instructions clear:	□✓□		
Samples preserved properly: VOCs headspace free:	✓					Bottles received for unspecified tests Sufficient volume recvd for analysis: Compositing instructions clear:	□✓□		
Samples preserved properly: VOCs headspace free:	✓					Bottles received for unspecified tests Sufficient volume recvd for analysis: Compositing instructions clear:	□✓□		
Samples preserved properly: VOCs headspace free:	✓					Bottles received for unspecified tests Sufficient volume recvd for analysis: Compositing instructions clear:	□✓□		
Samples preserved properly: VOCs headspace free:	✓					Bottles received for unspecified tests Sufficient volume recvd for analysis: Compositing instructions clear:	□✓□		
Samples preserved properly: VOCs headspace free:	✓					Bottles received for unspecified tests Sufficient volume recvd for analysis: Compositing instructions clear:	□✓□		

TD8747: Chain of Custody Page 3 of 4

Page 1 of 2

Sample Receipt Log

Job #: TD8747 **Date / Time Received:** 9/9/2017 10:15:00 AM 10:15: **Initials:** DS

Client: GHD

Cooler#	Sample ID:	Vol	Bot #	Location	Pres	pH	Therm ID	Initial Temp	Therm CF	Corrected Temp
1	TD8747-1	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.5	0	2.5
1	TD8747-1	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.5	0	2.5
1	TD8747-1	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.5	0	2.5
1	TD8747-2	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.5	0	2.5
1	TD8747-2	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.5	0	2.5
1	TD8747-2	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.5	0	2.5
1	TD8747-3	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.5	0	2.5
1	TD8747-3	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.5	0	2.5
1	TD8747-3	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.5	0	2.5
1	TD8747-4	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.5	0	2.5
1	TD8747-4	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.5	0	2.5
1	TD8747-4	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.5	0	2.5
1	TD8747-5	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.5	0	2.5
1	TD8747-5	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.5	0	2.5
1	TD8747-5	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.5	0	2.5
1	TD8747-6	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.5	0	2.5
1	TD8747-6	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.5	0	2.5
1	TD8747-6	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.5	0	2.5
1	TD8747-7	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.5	0	2.5
1	TD8747-7	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.5	0	2.5
1	TD8747-7	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.5	0	2.5
	TD8747-8	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD8747-8	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				

TD8747: Chain of Custody

Page 4 of 4

Section 5

MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: SW846 8260C

Method Blank Summary

Job Number: TD8747

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VG2456-MB	G0276345.D	1	09/14/17	ZQ	n/a	n/a	VG2456

The QC reported here applies to the following samples:

TD8747-1, TD8747-2, TD8747-3, TD8747-4, TD8747-5, TD8747-6, TD8747-7, TD8747-8

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	0.50	ug/l
75-27-4	Bromodichloromethane	ND	0.50	ug/l
67-66-3	Chloroform	ND	0.50	ug/l
75-34-3	1,1-Dichloroethane	ND	0.50	ug/l
75-35-4	1,1-Dichloroethylene	ND	0.50	ug/l
107-06-2	1,2-Dichloroethane	ND	0.50	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	0.50	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	0.50	ug/l
74-83-9	Methyl bromide	ND	0.50	ug/l
74-87-3	Methyl chloride	ND	0.50	ug/l
71-55-6	1,1,1-Trichloroethane	ND	0.50	ug/l
127-18-4	Tetrachloroethylene	ND	0.50	ug/l
108-88-3	Toluene	ND	0.50	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.5	ug/l
	m, p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	102%	72-122%
17060-07-0	1,2-Dichloroethane-D4	101%	68-124%
2037-26-5	Toluene-D8	102%	80-119%
460-00-4	4-Bromofluorobenzene	97%	72-126%

Page 1 of 1

Method: SW846 8260C

Blank Spike/Blank Spike Duplicate Summary

Job Number: TD8747

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
VG2456-BS	G0276341.D	1	09/14/17	ZQ	n/a	n/a	VG2456
VG2456-BSD ^a	G0276342.D	1	09/14/17	ZQ	n/a	n/a	VG2456

The QC reported here applies to the following samples:

TD8747-1, TD8747-2, TD8747-3, TD8747-4, TD8747-5, TD8747-6, TD8747-7, TD8747-8

CAS No.	Compound	Spike	BSP	BSP %	BSD	BSD %	RPD	Limits Rec/RPD
CAS No.	Compound	ug/l	ug/l	/0	ug/l	/0	KID	Kec/Kr D
71-43-2	Benzene	25	23.1	92	23.2	93	0	68-119/30
75-27-4	Bromodichloromethane	25	22.9	92	23.3	93	2	72-118/30
67-66-3	Chloroform	25	22.9	92	22.9	92	0	73-122/30
75-34-3	1,1-Dichloroethane	25	24.6	98	24.5	98	0	72-121/30
75-35-4	1,1-Dichloroethylene	25	24.5	98	24.4	98	0	67-140/30
107-06-2	1,2-Dichloroethane	25	23.0	92	23.4	94	2	68-121/30
156-59-2	cis-1,2-Dichloroethylene	25	23.7	95	23.8	95	0	72-117/30
156-60-5	trans-1,2-Dichloroethylene	25	24.1	96	24.0	96	0	68-124/30
74-83-9	Methyl bromide	25	20.3	81	20.8	83	2	53-138/30
74-87-3	Methyl chloride	25	18.5	74	18.8	75	2	50-145/30
71-55-6	1,1,1-Trichloroethane	25	24.3	97	24.0	96	1	72-129/30
127-18-4	Tetrachloroethylene	25	25.1	100	25.4	102	1	72-132/30
108-88-3	Toluene	25	23.0	92	23.3	93	1	73-119/30
79-01-6	Trichloroethylene	25	24.3	97	24.4	98	0	73-121/30
75-69-4	Trichlorofluoromethane	25	24.2	97	23.7	95	2	46-152/30
75-01-4	Vinyl chloride	25	21.6	86	21.7	87	0	54-126/30
1330-20-7	Xylene (total)	75	69.5	93	71.1	95	2	74-119/30
	m,p-Xylene	50	47.0	94	48.1	96	2	74-119/30
95-47-6	o-Xylene	25	22.4	90	23.0	92	3	73-121/30

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
1868-53-7	Dibromofluoromethane	98%	99%	72-122%
17060-07-0	1,2-Dichloroethane-D4	98%	98%	68-124%
2037-26-5	Toluene-D8	101%	102%	80-119%
460-00-4	4-Bromofluorobenzene	98%	99%	72-126%

(a) AZ:Q9

^{* =} Outside of Control Limits.

ACCUTEST Gulf Coast

09/22/17

SGS ACCUTEST IS PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.

e-Hardcopy 2.0
Automated Report

Technical Report for

GHD Services Inc.

52nd Street Superfund Site - OU2 Area, Phoenix, AZ

013932-130

SGS Accutest Job Number: TD9053

Sampling Dates: 09/11/17 - 09/13/17

GHD Services Inc.

4747 N. 22nd Street Second Floor

Phoenix, AZ 85016

manfred.plaschke@ghd.com; mary.cameron@ghd.com;

sheri.finn@ghd.com ATTN: Manfred Plaschke

Total number of pages in report: 33

Review standard terms at: http://www.sgs.com/en/terms-and-conditions

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Anita Patel 713-271-4700

Certifications: TX (T104704220-17-27) AR (14-016-0) AZ (AZ0769) FL (E87628) KS (E-10366) LA (85695/04004) NJ (TX010) OK (2017-002) VA (8999)

This report shall not be reproduced, except in its entirety, without the written approval of SGS Accutest. Test results relate only to samples analyzed.

Laboratory Director

Sections:

-1-

Table of Contents

Section 1: Sample Summary
Section 2: Summary of Hits
Section 3: Sample Results 6
3.1: TD9053-1: GW-091117-PG-08
3.2: TD9053-2: GW-091117-PG-09
3.3: TD9053-3: GW-091117-PG-10
3.4: TD9053-4: GW-091117-PG-11
3.5: TD9053-5: GW-091217-PG-12
3.6: TD9053-6: GW-091217-PG-13
3.7: TD9053-7: GW-091217-PG-14
3.8: TD9053-8: GW-091217-PG-15
3.9: TD9053-9: GW-091317-PG-16
3.10: TD9053-10: GW-091317-PG-17
3.11: TD9053-11: GW-091317-PG-18
3.12: TD9053-12: GW-091317-PG-19
3.13: TD9053-13: TRIP BLANK
Section 4: Misc. Forms
4.1: Arizona Qualifiers
4.2: Chain of Custody
Section 5: MS Volatiles - QC Data Summaries
5.1: Method Blank Summary
5.2: Blank Spike Summary
5.3: Blank Spike/Blank Spike Duplicate Summary
5.4: Matrix Spike/Matrix Spike Duplicate Summary

Sample Summary

Job No:

TD9053

GHD Services Inc.

52nd Street Superfund Site - OU2 Area, Phoenix, AZ Project No: 013932-130

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
TD9053-1	09/11/17	09:25	09/14/17	AQ	Ground Water	GW-091117-PG-08
TD9053-2	09/11/17	10:45	09/14/17	AQ	Ground Water	GW-091117-PG-09
TD9053-3	09/11/17	11:50	09/14/17	AQ	Ground Water	GW-091117-PG-10
TD9053-4	09/11/17	13:30	09/14/17	AQ	Ground Water	GW-091117-PG-11
TD9053-5	09/12/17	08:10	09/14/17	AQ	Ground Water	GW-091217-PG-12
TD9053-6	09/12/17	11:45	09/14/17	AQ	Ground Water	GW-091217-PG-13
TD9053-7	09/12/17	14:40	09/14/17	AQ	Ground Water	GW-091217-PG-14
TD9053-8	09/12/17	14:45	09/14/17	AQ	Ground Water	GW-091217-PG-15
TD9053-9	09/13/17	07:10	09/14/17	AQ	Ground Water	GW-091317-PG-16
TD9053-10	09/13/17	10:45	09/14/17	AQ	Ground Water	GW-091317-PG-17
TD9053-11	09/13/17	12:00	09/14/17	AO	Ground Water	GW-091317-PG-18
TD9053-12	09/13/17				Ground Water	GW-091317-PG-19
TD9053-13	09/13/17	00:00	09/14/17	AQ	Trip Blank Water	TRIP BLANK

Summary of Hits Job Number: TD9053

GHD Services Inc. Account:

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

09/11/17 thru 09/13/17 **Collected:**

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
TD9053-1	GW-091117-PG-0	8				
Trichloroethylene	e	3.5	0.50		ug/l	SW846 8260C
TD9053-2	TD9053-2 GW-091117-PG-09					
No hits reported	in this sample.					
TD9053-3	GW-091117-PG-1	0				
Trichloroethylene	e	1.5	0.50		ug/l	SW846 8260C
TD9053-4	GW-091117-PG-1	1				
Trichloroethylene		2.1	0.50		ug/l	SW846 8260C
TD9053-5	GW-091217-PG-1	2				
	cis-1,2-Dichloroethylene Trichloroethylene		1.0 0.50		ug/l ug/l	SW846 8260C SW846 8260C
TD9053-6	GW-091217-PG-1	3				
1,1-Dichloroethy Trichloroethylend		1.0 4.8	1.0 0.50		ug/l ug/l	SW846 8260C SW846 8260C
TD9053-7	GW-091217-PG-1	4				
1,1-Dichloroethane 1,1-Dichloroethylene cis-1,2-Dichloroethylene Trichloroethylene		1.8 4.9 1.4 5.9	1.0 1.0 1.0 0.50		ug/l ug/l ug/l ug/l	SW846 8260C SW846 8260C SW846 8260C SW846 8260C
TD9053-8	GW-091217-PG-1	5				
1,1-Dichloroethane 1,1-Dichloroethylene cis-1,2-Dichloroethylene Trichloroethylene		1.7 4.7 1.4 5.9	1.0 1.0 1.0 0.50		ug/l ug/l ug/l ug/l	SW846 8260C SW846 8260C SW846 8260C SW846 8260C
TD9053-9	GW-091317-PG-1	6				
1,1-Dichloroethy Trichloroethylend		2.3 2.6	1.0 0.50		ug/l ug/l	SW846 8260C SW846 8260C

Summary of Hits Job Number: TD9053

Account: GHD Services Inc.

52nd Street Superfund Site - OU2 Area, Phoenix, AZ **Project:**

Collected: 09/11/17 thru 09/13/17

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method		
TD9053-10 GW-091317-PG-1	.7						
1,1-Dichloroethylene cis-1,2-Dichloroethylene Trichloroethylene	2.5 1.4 7.6	1.0 1.0 0.50		ug/l ug/l ug/l	SW846 8260C SW846 8260C SW846 8260C		
TD9053-11 GW-091317-PG-18							
No hits reported in this sample.							
TD9053-12 GW-091317-PG-19							
Chloroform Trichloroethylene	2.0 5.1	1.0 0.50		ug/l ug/l	SW846 8260C SW846 8260C		

TD9053-13 TRIP BLANK

No hits reported in this sample.

Section 3 &

Report of Anal	lvsis	
r		

Client Sample ID: GW-091117-PG-08

 Lab Sample ID:
 TD9053-1
 Date Sampled:
 09/11/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/14/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 Z58550.D 1 09/21/17 11:40 EM n/a vZ5406

Run #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	3.5	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
CAS No.	Surrogate Recoveries	Kull# 1	Kuli# 2	Limits
1868-53-7	Dibromofluoromethane	99%		72-122%
17060-07-0	1,2-Dichloroethane-D4	104%		68-124%
2037-26-5	Toluene-D8	97%		80-119%
460-00-4	4-Bromofluorobenzene	100%		72-126%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ن

Client Sample ID: GW-091117-PG-09

 Lab Sample ID:
 TD9053-2
 Date Sampled:
 09/11/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/14/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1	X01240078.D	1	09/15/17 17:24	EM	n/a	n/a	VX3347
Run #2							

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane ^a	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide ^b	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	100%		72-122%
17060-07-0	1,2-Dichloroethane-D4	107%		68-124%
2037-26-5	Toluene-D8	103%		80-119%
460-00-4	4-Bromofluorobenzene	103%		72-126%

⁽a) AZ:V1

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

8 of 33
ACCUTEST
TD9053

⁽b) CCV recovery was below method acceptance criteria. Low check standard confirms detectability. AZ:N1

Client Sample ID: GW-091117-PG-10

 Lab Sample ID:
 TD9053-3
 Date Sampled:
 09/11/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/14/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	X01240079.D	1	09/15/17 17:50	EM	n/a	n/a	VX3347
Run #2							

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane ^a	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide ^b	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	1.5	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	100%		72-122%
17060-07-0	1,2-Dichloroethane-D4	112%		68-124%
2037-26-5	Toluene-D8	102%		80-119%
460-00-4	4-Bromofluorobenzene	101%		72-126%

⁽a) AZ:V1

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

⁽b) CCV recovery was below method acceptance criteria. Low check standard confirms detectability. AZ:N1

Report of Analysis

Client Sample ID: GW-091117-PG-11

Lab Sample ID: TD9053-4 **Date Sampled:** 09/11/17 Matrix: AQ - Ground Water **Date Received:** 09/14/17 Method: SW846 8260C Percent Solids: n/a

52nd Street Superfund Site - OU2 Area, Phoenix, AZ **Project:**

File ID DF **Prep Batch Analytical Batch** Analyzed By **Prep Date** VZ5406 Run #1 Z58551.D 1 09/21/17 12:06 EM n/an/aRun #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	2.1	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	96%		72-122%
17060-07-0	1,2-Dichloroethane-D4	105%		68-124%
2037-26-5	Toluene-D8	101%		80-119%
460-00-4	4-Bromofluorobenzene	99%		72-126%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: GW-091217-PG-12

Lab Sample ID: TD9053-5 **Date Sampled:** 09/12/17 Matrix: AQ - Ground Water **Date Received:** 09/14/17 Method: SW846 8260C **Percent Solids:** n/a

52nd Street Superfund Site - OU2 Area, Phoenix, AZ **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	X01240081.D	1	09/15/17 18:43	EM	n/a	n/a	VX3347
Run #2							

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane ^a	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	2.1	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide ^b	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	2.4	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	100%		72-122%
17060-07-0	1,2-Dichloroethane-D4	111%		68-124%
2037-26-5	Toluene-D8	103%		80-119%
460-00-4	4-Bromofluorobenzene	101%		72-126%

⁽a) AZ:V1

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ACCUTEST

⁽b) CCV recovery was below method acceptance criteria. Low check standard confirms detectability. AZ:N1

Client Sample ID: GW-091217-PG-13

 Lab Sample ID:
 TD9053-6
 Date Sampled:
 09/12/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/14/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 Z58552.D 1 09/21/17 12:35 EM n/a n/a VZ5406
Run #2

Ruii #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	1.0	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	4.8	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	97%		72-122%
17060-07-0	1,2-Dichloroethane-D4	107%		68-124%
2037-26-5	Toluene-D8	98%		80-119%
460-00-4	4-Bromofluorobenzene	104%		72-126%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: GW-091217-PG-14

 Lab Sample ID:
 TD9053-7
 Date Sampled:
 09/12/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/14/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 Z58553.D 1 09/21/17 13:01 EM n/a n/a VZ5406
Run #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	1.8	1.0	ug/l
75-35-4	1,1-Dichloroethylene	4.9	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	1.4	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	5.9	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	99%		72-122%
17060-07-0	1,2-Dichloroethane-D4	106%		68-124%
2037-26-5	Toluene-D8	100%		80-119%
460-00-4	4-Bromofluorobenzene	100%		72-126%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: GW-091217-PG-15

 Lab Sample ID:
 TD9053-8
 Date Sampled:
 09/12/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/14/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 Z58554.D 1 09/21/17 13:27 EM n/a n/a VZ5406
Run #2

Purge Volume

Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	1.7	1.0	ug/l
75-35-4	1,1-Dichloroethylene	4.7	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	1.4	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	5.9	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	97%		72-122%
17060-07-0	1,2-Dichloroethane-D4	107%		68-124%
2037-26-5	Toluene-D8	100%		80-119%
460-00-4	4-Bromofluorobenzene	99%		72-126%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

14 of 33 ACCUTEST TD9053

Client Sample ID: GW-091317-PG-16

 Lab Sample ID:
 TD9053-9
 Date Sampled:
 09/13/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/14/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 Z58555.D 1 09/21/17 13:53 EM n/a n/a VZ5406
Run #2

Purge Volume

5.0 ml

Run #1 Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	2.3	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	2.6	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	99%		72-122%
17060-07-0	1,2-Dichloroethane-D4	103%		68-124%
2037-26-5	Toluene-D8	98%		80-119%
460-00-4	4-Bromofluorobenzene	99%		72-126%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: GW-091317-PG-17

 Lab Sample ID:
 TD9053-10
 Date Sampled:
 09/13/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/14/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 Z58556.D 1 09/21/17 14:19 EM n/a n/a VZ5406

Run #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	2.5	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	1.4	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	7.6	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	96%		72-122%
17060-07-0	1,2-Dichloroethane-D4	107%		68-124%
2037-26-5	Toluene-D8	100%		80-119%
460-00-4	4-Bromofluorobenzene	98%		72-126%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Client Sample ID: GW-091317-PG-18

Lab Sample ID: TD9053-11 **Date Sampled:** 09/13/17 Matrix: AQ - Ground Water **Date Received:** 09/14/17 Method: SW846 8260C **Percent Solids:** n/a

52nd Street Superfund Site - OU2 Area, Phoenix, AZ **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	X01240087.D	1	09/15/17 21:22	EM	n/a	n/a	VX3347
Run #2							

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane ^a	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide ^b	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	98%		72-122%
17060-07-0	1,2-Dichloroethane-D4	111%		68-124%
2037-26-5	Toluene-D8	104%		80-119%
460-00-4	4-Bromofluorobenzene	102%		72-126%

⁽a) AZ:V1

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ACCUTEST

⁽b) CCV recovery was below method acceptance criteria. Low check standard confirms detectability. AZ:N1

 Lab Sample ID:
 TD9053-12
 Date Sampled:
 09/13/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/14/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	X01240088.D	1	09/15/17 21:48	EM	n/a	n/a	VX3347
Pun #2							

	D 77.1
	Purge Volume
Run #1	5.0 ml
Run #2	

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	2.0	1.0	ug/l
75-34-3	1,1-Dichloroethane ^a	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide ^b	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	5.1	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	98%		72-122%
17060-07-0	1,2-Dichloroethane-D4	111%		68-124%
2037-26-5	Toluene-D8	103%		80-119%
460-00-4	4-Bromofluorobenzene	102%		72-126%

⁽a) AZ:V1

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

⁽b) CCV recovery was below method acceptance criteria. Low check standard confirms detectability. AZ:N1

Client Sample ID: TRIP BLANK

 Lab Sample ID:
 TD9053-13
 Date Sampled:
 09/13/17

 Matrix:
 AQ - Trip Blank Water
 Date Received:
 09/14/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	X01240089.D	1	09/15/17 22:15	EM	n/a	n/a	VX3347
Run #2							

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane ^a	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide ^b	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	99%		72-122%
17060-07-0	1,2-Dichloroethane-D4	112%		68-124%
2037-26-5	Toluene-D8	102%		80-119%
460-00-4	4-Bromofluorobenzene	101%		72-126%

⁽a) AZ:V1

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

⁽b) CCV recovery was below method acceptance criteria. Low check standard confirms detectability. AZ:N1

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- · Arizona Qualifiers
- Chain of Custody

Arizona Qualifiers Page 1 of 1

Job Number: TD9053

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

The following Arizona qualifiers have been applied to data and/or QC in this report.

Qual	Description
N1	See case narrative.
Q9	Insufficient sample received to meet method QC requirements.
V1	CCV recovery was above method acceptance limits. This target analyte was not detected in the sample.

	343 ACCUT	CCT				Ave, Sa						775	E 6 2	Tracking	12	095	9		Bottle O	rder Contr	rol#			
-	ACCUI			(408)	588-020	00 F	AX: (4	108) 5	88-02	201		s	GS Acc	utest Quot	te#				SGS Acc	cutest NC	Job #: C	~	~ ~ ·	12
	-																					D	12.	> >
Company N	Client / Reporting Information		т —	Pro	ect Info	rmation												Reque	sted A	nalysis				Matrix Codes
company it	GHD		Project N	lame:	42																-			WW- Wastewater
Address			Street								*	\neg												GW- Ground Water SW- Surface Water
City	State	Zip	City		***************************************		S	tate				\dashv												SO- Soil
Project Con	tact: MANFRED PLASCHE		Project #	017	937	- 13	0	~																Ol-Oil WP-Wipe
Phone #			EMAIL:	Manfre					اء ما	F.6.	1.4													LIQ - Non-aqueous Liquid
Samplers's	Name PATRICK GREENE		Client Pu	rchase Order	#	5CH 7	1C (2)	Ĵ	n ci-	COP	4		0											AIR
	PATRICK GREENE		l		·	·	T						0928		1					i 1		1		DW- Drinking Water (Perchlorate Only)
SGS Accutest			Collecti	on		# of	П	Т		erved	3	es	8											
Sample ID	Sample ID / Field Point / Point of Collection GW - 091117 - P6 - 08	9/11/17	7ime 0925	Sampled by	Matrix GW	bottles	Ž ,	NaOH HNO3	H2SO4	NONE	MEOH	ENO.	V									+	_	LAB USE ONLY
1_	1 1 1709	1	1045	1	1	3	Н	+	++	+	╁	H	X			-	-+			-+		+		
3	// 10		1150			3	H	+	+	+	+	1	$\frac{\lambda}{\chi}$		-	-						-	\dashv	
Ц	上上上;	1	1330			3	Ш	+	$\forall \exists$	+	+		$\frac{2}{x}$			\dashv	-			-+	-			
5	GW-091217-PG- 12	9/12	0816			3	Ш	+	\forall	+	+	-	$\frac{1}{\lambda}$		-	_	-+			-	\dashv	+	\dashv	
6	1 1 13	1	1145			3	\parallel	+	T	+	T	 	$\frac{\hat{\lambda}}{\lambda}$		\dashv	\dashv	\dashv						\dashv	
7	14		1440			3		\top	\Box		T		×			_	_				-+	-		
ģ	L L 15		1445			3	\Box	T	\Box		T		X			\dashv	_			-		+	-	· · · · · · · · · · · · · · · · · · ·
9	GW-091317-PG-16	9/13	0710			3					П		X		1							\dashv	\dashv	
10	<u> </u>	1	1045	l		3			M				X			T	1			7	-	7	. +	
	Turnaround Time (Business days)					liverable												Com	nents / F	Remarks	<u> </u>			
\rightarrow	10 Day	oved By:/ Dat	e:			\" - Resul 3" - Resul			ımmari	ies					IA	M	31.1) B.	Y:_			uscirsi on at yl	***************************************	dam tarah
	5 Day					8+" - Res		C, and	chrom	atogran	ns				*******		~~~				P			
\vdash	3 Day 2 Day				- Level	4 data pa		-nn =					-							<u> </u>				
	1 Day			-	EDF Gle	,			ormat_				l		V	SRI	FIE	D	1 Y :	werene nee	rounnementalis		haranton.	entrance:
	Same Day			Provide	EDF Lo	gcode:							f											
Emerg	gency T/A data available VIA Lablink																							
Relinquish	ed by Sample Custody m	Date Time:	cumente	Received By:	h time :	samples	chang	ge po	SSESS	ion, in	cludi	ng cou	rier de		te Time:									
1 F	Bott Muy 413	n k	50D	1 000	US T	Mil	w	ď.	1 '			ou	~		-13-1		620	ľ	Received	فيل ﴿	è v			
Relingüish 3	ed by to) Sy	Date Time:	2/2	Received By:	Q	_	$\overline{}$	/	Relinq	uished E	Uve	***************************************		Da	te Time:			F	Received	Ву:	- /-			
Relinquish	ed ty:	Date Time:		Received By:			\neg)	Custoo	ly Seal #	,	Ap	propria	te Bottle / F	Pres. Y/	N	Headsp	ace Y/I	4 N		n Ice Y/N			Cooler Temp.
-		l		1_			~	•	1					4-b C0 1										1, 0 0

TD9053: Chain of Custody Page 1 of 6

CHAIN OF CUSTODY

2105 Lundy Ave,	San Jose, CA 95131
(408) 588-0200	FAX: (408) 588-0201

USIUDI								10	-	V- 2
e, CA 95131	FED-EX	Tracking 0 2	"S 312	2 09	159	Bottle Ore	der Control #			
408) 588-0201	SGS Ac	cutest Qu	ote#			SGS Acci	itest NC Job	#: C	09	1453
					Reque	sted An	alysis			Matrix Codes
										WW- Wastewater GW- Ground Water

	,																							Σ_{\perp}	
Client	/ Reporting Informat	tion			I Proj	act Info	rmation		9000000	i salahan in	nie Wales								_						
Company Name		1001		T	***************************************	ect milo	mation	189								T	Ī		Reque	sted Ar	alysis	-			Matrix Codes WW- Wastewater
Address	GHD			Project N	lame:																				GW- Ground Water SW- Surface Water
																									SV- Surface Water SO- Soil
City	State		Zip	City				St	ate																Ol-Oil
Project Contact:		PREVIOUS	***************************************	Project #																					WP-Wipe
Bl Phone #	SEE	THEYRAS		EMAIL:										0											LIQ - Non-aqueous Liquid
Samplers's Name				Client Pu	rchase Order	#		***********						26											AIR DW- Drinking Water
				Collect	ion	l	T	Numt	er of	prese	erved	Bottle	es	00											(Perchlorate Only)
SGS Accutest Sample ID Sampl	le ID / Field Point / P	oint of Collection	n Date	Time	Sampled by	Matrix	# of bottles	i i	TNO3	12SO4	NONE	VEOH VEOH	ENCORE												LAB USE ONLY
(1 6w	- 091317 - PG	- 18	9/13	1200	PG	Gω	3	1	T					X											
12 1		- 19	L	1330	P6	6W	3	П		П				X											
13 7	RIP BLANK		Nanatarakan			NÜ	2							X											
1/									T	П	T	T													

										П															
												Π													
								П		П															
Turna	round Time (Business da	- Vice	proved By:/ Da				eliverable		tion										Com	ments / F	Remarks				
10 Day	у	Ap	oproved By:/ Di	ste:			A" - Resul 3" - Resul		QC st	ımmar	ies														
5 Day				***************************************			3+" - Resi		, and	chrom	atogra	ms													
3 Day 2 Day		*****			l provent	l - Level or Geotra	4 data pa acker		DD F	ormat_						***************************************									
1 Day						EDF GI								-											
Emergency	_{Day} T/A data ayailabl	e VIA Lablink			Provide	EDF Lo	gcode: _							-											
A		Sample Custody		ocumente	d below ead	ch time	samples	chang	ge po	ssess	ion, i	ncludi	ing c	ourier o	lelivery										
Relinquished by	T. effer		Date Time:	71/0	1 Received By:					Reling	uished	By:				Date Tin	1e:	1 16	20)	Received 2 C Received	By:	٧.			
Relinquished by	Lav.	M.	Date Time:	1000	Received By	**				Reling	uished	By: ()	40	un	- 1	Date Tin	ie:		,	Received	Ву:	-4-			
Relinquished by:	277		Date Time:	1	Received By:			_		4 Custo	dy Seal	#		Appropri	ate Botti	e / Pres.	Y/N	Head	space Y	4 /N		On Ice Y	/ N		Cooler Temp.
					-			()			,	-	1			:7 Y / N				a Check I					

TD9053: Chain of Custody Page 2 of 6

72601				national desirable from the constraints of the cons					
* CONIER CONIER TORM TOW	Delivered by (circle one): (Recov) (PS ALGC Driver Client Date:	Cooler Number: Thermometer ID: CF, °C Corrected Temp, °C CF. °C	ACCUTES ACCUTES Dat	j.	TO SAMPLE RECEIVING ACCUTEST LABORATORIES 10165 HARWIN DR. SUITE 150 HOUSTON TX 77071 (N.3) 271-4700 REF OLEMORERA	218 10:30 A 0:50 0:51 0:51	THU - 1	S T X T X T X T X T X T X T X T X T X T	El xxx D

TD9053: Chain of Custody Page 3 of 6

SGS Accutest Sample Receipt Summary

Job Number: TD905	3	Client: Gl	HD		Project: OU2			
Date / Time Received: 9/14/20	017 10:10:0	0 AM De	elivery Method:		Airbill #'s: 770253120959	-		
No. Coolers:1	Therm ID:	IR-4;			Temp Adjustment Factor: (0;		
Cooler Temps (Initial/Adjusted): #1: (4.8/	/4.8);						
Cooler Security Y	or N		<u>Y</u> 01	<u>N</u>	Sample Integrity - Documentation	<u>Y</u>	or N	
Custody Seals Present:		3. COC Prese			Sample labels present on bottles:	✓		
2. Custody Seals Intact:	<u> </u>	Smpl Dates/T	Γime OK □	✓	Container labeling complete:	✓		
Cooler Temperature	Y or N	<u>L</u>			3. Sample container label / COC agree:		\checkmark	
1. Temp criteria achieved:	v]			Sample Integrity - Condition	<u>Y</u>	or N	
Cooler temp verification:					Sample recvd within HT:	✓		
3. Cooler media:	Ice (Bag	<u> </u>			All containers accounted for:	\checkmark		
Quality Control Preservation	Y or N	N N/A	WTB	STB	Condition of sample:	I	ntact	
1. Trip Blank present / cooler:	✓ □		\checkmark		Sample Integrity - Instructions	Υ	or N	N/A
2. Trip Blank listed on COC:					Analysis requested is clear:	✓		
3. Samples preserved properly:	v]			2. Bottles received for unspecified tests		\checkmark	
4. VOCs headspace free:	✓ □				3. Sufficient volume recvd for analysis:	✓		
					Compositing instructions clear:			✓
					5. Filtering instructions clear:			✓
Comments Added 1 set of water Coc time is 10:45 but			00.47					
Coc time is 10:45 but	10:50 on sar	The label for P	'G-17.					

TD9053: Chain of Custody Page 4 of 6

Sample Receipt Log

 Job #:
 TD9053
 Date / Time Received:
 9/14/2017 10:10:00 AM 10:1
 Initials:
 EC

Client: GHD

Cooler#	Sample ID:	Vol	Bot #	Location	Pres	рН	Therm ID	Initial Temp	Therm CF	Corrected Temp
1	TD9053-1	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-1	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-1	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-2	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-2	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-2	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-3	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-3	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-3	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-4	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-4	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-4	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-5	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-5	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-5	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-6	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-6	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-6	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-7	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-7	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-7	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-8	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-8	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8

TD9053: Chain of Custody Page 5 of 6

Sample Receipt Log

 Job #:
 TD9053
 Date / Time Received:
 9/14/2017 10:10:00 AM 10:1
 Initials:
 EC

Client: GHD

Cooler#	Sample ID:	Vol	Bot #	Location	Pres	рН	Therm ID	Initial Temp	Therm CF	Corrected Temp
1	TD9053-8	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-9	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-9	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-9	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-10	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-10	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-10	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-11	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-11	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-11	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-12	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-12	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-12	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-13	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-13	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-14	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8
1	TD9053-14	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-4	4.8	0	4.8

TD9053: Chain of Custody Page 6 of 6

Section 5

MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: SW846 8260C

Method Blank Summary

Job Number: TD9053

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VX3347-MB	X01240073.D	1	09/15/17	EM	n/a	n/a	VX3347

The QC reported here applies to the following samples:

TD9053-2, TD9053-3, TD9053-5, TD9053-11, TD9053-12, TD9053-13

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	0.50	ug/l
75-27-4	Bromodichloromethane	ND	0.50	ug/l
67-66-3	Chloroform	ND	0.50	ug/l
75-34-3	1,1-Dichloroethane	ND	0.50	ug/l
75-35-4	1,1-Dichloroethylene	ND	0.50	ug/l
107-06-2	1,2-Dichloroethane	ND	0.50	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	0.50	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	0.50	ug/l
74-83-9	Methyl bromide	ND	0.50	ug/l
74-87-3	Methyl chloride	ND	0.50	ug/l
71-55-6	1,1,1-Trichloroethane	ND	0.50	ug/l
127-18-4	Tetrachloroethylene	ND	0.50	ug/l
108-88-3	Toluene	ND	0.50	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.5	ug/l
	m, p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l

CAS No. Surrogate Recoveries Limits

1868-53-7	Dibromofluoromethane	98%	72-122%
17060-07-0	1,2-Dichloroethane-D4	110%	68-124%
2037-26-5	Toluene-D8	103%	80-119%
460-00-4	4-Bromofluorobenzene	100%	72-126%

Method: SW846 8260C

Method Blank Summary

Job Number: TD9053

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VZ5406-MB	Z58548.D	1	09/21/17	EM	n/a	n/a	VZ5406

The QC reported here applies to the following samples:

TD9053-1, TD9053-4, TD9053-6, TD9053-7, TD9053-8, TD9053-9, TD9053-10

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	0.50	ug/l
75-27-4	Bromodichloromethane	ND	0.50	ug/l
67-66-3	Chloroform	ND	0.50	ug/l
75-34-3	1,1-Dichloroethane	ND	0.50	ug/l
75-35-4	1,1-Dichloroethylene	ND	0.50	ug/l
107-06-2	1,2-Dichloroethane	ND	0.50	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	0.50	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	0.50	ug/l
74-83-9	Methyl bromide	ND	0.50	ug/l
74-87-3	Methyl chloride	ND	0.50	ug/l
71-55-6	1,1,1-Trichloroethane	ND	0.50	ug/l
127-18-4	Tetrachloroethylene	ND	0.50	ug/l
108-88-3	Toluene	ND	0.50	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.5	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l

CAS No. Surrogate Recoveries Limits

1868-53-7	Dibromofluoromethane	92%	72-122%
17060-07-0	1,2-Dichloroethane-D4	102%	68-124%
2037-26-5	Toluene-D8	99%	80-119%
460-00-4	4-Bromofluorobenzene	100%	72-126%

Method: SW846 8260C

Blank Spike Summary Job Number: TD9053

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample VZ5406-BS	File ID Z58546.D	DF 1	Analyzed 09/21/17	By EM	Prep Date n/a	Prep Batch n/a	Analytical Batch VZ5406

The QC reported here applies to the following samples:

TD9053-1, TD9053-4, TD9053-6, TD9053-7, TD9053-8, TD9053-9, TD9053-10

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2	Benzene	25	25.3	101	68-119
75-27-4	Bromodichloromethane	25	22.5	90	72-118
67-66-3	Chloroform	25	24.3	97	73-122
75-34-3	1,1-Dichloroethane	25	23.3	93	72-121
75-35-4	1,1-Dichloroethylene	25	24.3	97	67-140
107-06-2	1,2-Dichloroethane	25	24.4	98	68-121
156-59-2	cis-1,2-Dichloroethylene	25	22.4	90	72-117
156-60-5	trans-1,2-Dichloroethylene	25	23.3	93	68-124
74-83-9	Methyl bromide	25	22.1	88	53-138
74-87-3	Methyl chloride	25	22.5	90	50-145
71-55-6	1,1,1-Trichloroethane	25	23.0	92	72-129
127-18-4	Tetrachloroethylene	25	26.9	108	72-132
108-88-3	Toluene	25	26.6	106	73-119
79-01-6	Trichloroethylene	25	25.9	104	73-121
75-69-4	Trichlorofluoromethane	25	22.9	92	46-152
75-01-4	Vinyl chloride	25	27.9	112	54-126
1330-20-7	Xylene (total)	75	80.0	107	74-119
	m, p-Xylene	50	54.4	109	74-119
95-47-6	o-Xylene	25	25.6	102	73-121

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	92%	72-122%
17060-07-0	1,2-Dichloroethane-D4	98%	68-124%
2037-26-5	Toluene-D8	99%	80-119%
460-00-4	4-Bromofluorobenzene	102%	72-126%

^{* =} Outside of Control Limits.

Method: SW846 8260C

Blank Spike/Blank Spike Duplicate Summary

Job Number: TD9053

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
VX3347-BS	X01240070.D	1	09/15/17	EM	n/a	n/a	VX3347
VX3347-BSD a	X01240071.D	1	09/15/17	EM	n/a	n/a	VX3347

The QC reported here applies to the following samples:

TD9053-2, TD9053-3, TD9053-5, TD9053-11, TD9053-12, TD9053-13

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
	_	_			_			
71-43-2	Benzene	25	22.2	89	22.9	92	3	68-119/30
75-27-4	Bromodichloromethane	25	21.6	86	22.1	88	2	72-118/30
67-66-3	Chloroform	25	20.8	83	20.9	84	0	73-122/30
75-34-3	1,1-Dichloroethane	25	22.4	90	23.0	92	3	72-121/30
75-35-4	1,1-Dichloroethylene	25	29.8	119	30.4	122	2	67-140/30
107-06-2	1,2-Dichloroethane	25	24.2	97	24.6	98	2	68-121/30
156-59-2	cis-1,2-Dichloroethylene	25	22.3	89	22.8	91	2	72-117/30
156-60-5	trans-1,2-Dichloroethylene	25	23.3	93	23.8	95	2	68-124/30
74-83-9	Methyl bromide	25	15.1	60	17.6	70	15	53-138/30
74-87-3	Methyl chloride	25	21.4	86	22.2	89	4	50-145/30
71-55-6	1,1,1-Trichloroethane	25	22.7	91	23.3	93	3	72-129/30
127-18-4	Tetrachloroethylene	25	21.3	85	22.6	90	6	72-132/30
108-88-3	Toluene	25	22.1	88	22.7	91	3	73-119/30
79-01-6	Trichloroethylene	25	20.7	83	21.5	86	4	73-121/30
75-69-4	Trichlorofluoromethane	25	27.6	110	28.8	115	4	46-152/30
75-01-4	Vinyl chloride	25	23.1	92	23.8	95	3	54-126/30
1330-20-7	Xylene (total)	75	66.2	88	67.7	90	2	74-119/30
	m,p-Xylene	50	45.2	90	46.1	92	2	74-119/30
95-47-6	o-Xylene	25	21.1	84	21.6	86	2	73-121/30

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
1868-53-7	Dibromofluoromethane	104%	102%	72-122%
17060-07-0	1,2-Dichloroethane-D4	109%	107%	68-124%
2037-26-5	Toluene-D8	102%	102%	80-119%
460-00-4	4-Bromofluorobenzene	101%	101%	72-126%

(a) AZ:Q9

^{* =} Outside of Control Limits.

Method: SW846 8260C

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: TD9053

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
TD8740-1MS TD8740-1MSD	Z58560.D Z58561.D	10 10	09/21/17 09/21/17	EM EM	n/a	n/a	VZ5406 VZ5406
TD8740-1MSD	Z58559.D	10	09/21/17	EM EM	n/a n/a	n/a n/a	VZ5406 VZ5406

The QC reported here applies to the following samples:

TD9053-1, TD9053-4, TD9053-6, TD9053-7, TD9053-8, TD9053-9, TD9053-10

		TD8740-1		Spike MS MS		Spike MSD MS		MSD	ISD Lin			
CAS No.	Compound	ug/l	Q	ug/l	ug/l		%	ug/l	ug/l	%	RPD	Rec/RPD
71-43-2	Benzene	ND		250	213		85	250	238	95	11	68-119/12
71-43-2 75-27-4	Bromodichloromethane	ND ND		250	187		75	250	203	81	8	72-118/16
	Chloroform											
67-66-3 75-34-3		ND ND		250	210 199		84	250	235	94	11 14	73-122/13 72-121/14
	1,1-Dichloroethane	ND		250			80	250	230	92		
75-35-4	1,1-Dichloroethylene	25.6		250	229		81	250	257	93	12	67-140/18
107-06-2	1,2-Dichloroethane	ND		250	209		84	250	229	92	9	68-121/12
156-59-2	cis-1,2-Dichloroethylene	49.9		250	242		77	250	271	88	11	72-117/13
156-60-5	trans-1,2-Dichloroethylene	ND		250	198		79	250	226	90	13	68-124/15
74-83-9	Methyl bromide	ND		250	179		72	250	197	79	10	53-138/16
74-87-3	Methyl chloride	ND		250	183		73	250	206	82	12	50-145/17
71-55-6	1,1,1-Trichloroethane	15.5		250	211		78	250	233	87	10	72-129/14
127-18-4	Tetrachloroethylene	36.3		250	267		92	250	291	102	9	72-132/14
108-88-3	Toluene	ND		250	224		90	250	248	99	10	73-119/13
79-01-6	Trichloroethylene	840		250	932		37* b	250	984	58* b	5	73-121/13
75-69-4	Trichlorofluoromethane	ND		250	212		85	250	218	87	3	46-152/25
75-01-4	Vinyl chloride	3.6		250	238		94	250	265	105	11	54-126/17
1330-20-7	Xylene (total)	ND		750	691		92	750	749	100	8	74-119/13
	m,p-Xylene	ND		500	471		94	500	510	102	8	74-119/13
95-47-6	o-Xylene	ND		250	221		88	250	239	96	8	73-121/13
CAS No.	Surrogate Recoveries	MS		MSD	,	TD8	740-1	Limits				
1868-53-7	Dibromofluoromethane	91%		93%	9	98%		72-1229	%			
17060-07-0	1,2-Dichloroethane-D4	99%		99%		108%	6	68-1249	%			
	- · · · · · · · · · · · · · · · · · · ·	00										

CAS No.	Surrogate Recoveries	MS	MSD	TD8740-1	Limits
		0.1		0.00	
1868-53-7	Dibromofluoromethane	91%	93%	98%	72-122%
17060-07-0	1,2-Dichloroethane-D4	99%	99%	108%	68-124%
2037-26-5	Toluene-D8	98%	98%	99%	80-119%
460-00-4	4-Bromofluorobenzene	100%	99%	101%	72-126%

⁽a) AZ:D2

⁽b) Outside control limits due to high level in sample relative to spike amount.

^{* =} Outside of Control Limits.

ACCUTEST Gulf Coast

09/21/17

SGS ACCUTEST IS PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.

e-Hardcopy 2.0
Automated Report

Technical Report for

GHD Services Inc.

52nd Street Superfund Site - OU2 Area, Phoenix, AZ

013932

SGS Accutest Job Number: TD9149

Sampling Dates: 09/14/17 - 09/15/17

GHD Services Inc.

4747 N. 22nd Street Second Floor

Phoenix, AZ 85016

manfred.plaschke@ghd.com; mary.cameron@ghd.com;

sheri.finn@ghd.com ATTN: Manfred Plaschke

Total number of pages in report: 27

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Anita Patel 713-271-4700

Certifications: TX (T104704220-17-27) AR (14-016-0) AZ (AZ0769) FL (E87628) KS (E-10366) LA (85695/04004) NJ (TX010) OK (2017-002) VA (8999)

This report shall not be reproduced, except in its entirety, without the written approval of SGS Accutest. Test results relate only to samples analyzed.

Laboratory Director

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	4
Section 3: Sample Results	5
3.1: TD9149-1: GW-091417-PG-20	
3.2: TD9149-2: GW-091417-PG-21	7
3.3: TD9149-3: GW-091417-PG-22	8
3.4: TD9149-4: GW-091417-PG-23	9
3.5: TD9149-5: GW-091417-PG-24	10
3.6: TD9149-6: GW-091417-PG-25	11
3.7: TD9149-7: GW-091517-PG-26	12
3.8: TD9149-8: TRIP BLANK	13
Section 4: Misc. Forms	14
4.1: Arizona Qualifiers	15
4.2: Chain of Custody	16
Section 5: MS Volatiles - QC Data Summaries	20
5.1: Method Blank Summary	
5.2: Blank Spike Summary	24
5.3: Blank Spike/Blank Spike Duplicate Summary	
5.4: Matrix Spike/Matrix Spike Duplicate Summary	

•

Sample Summary

GHD Services Inc.

Job No:

TD9149

52nd Street Superfund Site - OU2 Area, Phoenix, AZ Project No: 013932

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
TD9149-1	09/14/17	06:40	09/16/17	AQ	Ground Water	GW-091417-PG-20
TD9149-2	09/14/17	08:15	09/16/17	AQ	Ground Water	GW-091417-PG-21
TD9149-3	09/14/17	08:55	09/16/17	AQ	Ground Water	GW-091417-PG-22
TD9149-4	09/14/17	11:20	09/16/17	AQ	Ground Water	GW-091417-PG-23
TD9149-5	09/14/17	12:40	09/16/17	AQ	Ground Water	GW-091417-PG-24
TD9149-6	09/14/17	12:45	09/16/17	AQ	Ground Water	GW-091417-PG-25
TD9149-7	09/15/17	07:45	09/16/17	AQ	Ground Water	GW-091517-PG-26
TD9149-8	09/14/17	00:00	09/16/17	AQ	Trip Blank Water	TRIP BLANK

Summary of Hits

Job Number: TD9149 Account: GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Collected: 09/14/17 thru 09/15/17

TD9149-1 GW-091417-PG-20

No hits reported in this sample.

TD9149-2 GW-091417-PG-21

No hits reported in this sample.

TD9149-3 GW-091417-PG-22

Chloroform	1.1	1.0	ug/l	SW846 8260C
1,1-Dichloroethane	2.1	1.0	ug/l	SW846 8260C
1,1-Dichloroethylene	2.7	1.0	ug/l	SW846 8260C
cis-1,2-Dichloroethylene	2.0	1.0	ug/l	SW846 8260C
Trichloroethylene	10.3	0.50	ug/l	SW846 8260C

TD9149-4 GW-091417-PG-23

Chloroform	1.3	1.0	ug/l	SW846 8260C
Tetrachloroethylene	1.4	1.0	ug/l	SW846 8260C
Trichloroethylene	7.7	0.50	ug/l	SW846 8260C

TD9149-5 GW-091417-PG-24

Chloroform	1.5	1.0	ug/l	SW846 8260C
Trichloroethylene	13.0	0.50	ug/l	SW846 8260C

TD9149-6 GW-091417-PG-25

Chloroform	1.6	1.0	ug/l	SW846 8260C
Trichloroethylene	13.1	0.50	ug/l	SW846 8260C

TD9149-7 GW-091517-PG-26

1,1-Dichloroethane	2.2	1.0	ug/l	SW846 8260C
1,1-Dichloroethylene	5.1	1.0	ug/l	SW846 8260C
cis-1,2-Dichloroethylene	2.2	1.0	ug/l	SW846 8260C
Trichloroethylene	8.8	0.50	ug/l	SW846 8260C

TD9149-8 TRIP BLANK

No hits reported in this sample.

Section 3 &

Report of Anal	lvsis	
r		

Client Sample ID: GW-091417-PG-20

Lab Sample ID: TD9149-1 **Date Sampled:** 09/14/17 Matrix: **Date Received:** AQ - Ground Water 09/16/17 Method: SW846 8260C **Percent Solids:** n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF **Prep Batch Analytical Batch** Analyzed By **Prep Date** Run #1 X01240161.D 09/19/17 01:42 EM n/a VX3350 n/a

Run #2

Purge Volume Run #1 5.0 mlRun #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene ^a	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane ^a	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	105%		72-122%
17060-07-0	1,2-Dichloroethane-D4	111%		68-124%
2037-26-5	Toluene-D8	105%		80-119%
460-00-4	4-Bromofluorobenzene	104%		72-126%

(a) AZ:V1

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: GW-091417-PG-21

 Lab Sample ID:
 TD9149-2
 Date Sampled:
 09/14/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/16/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1X01240162.D109/19/17 02:09EMn/an/aVX3350

Run #2

Purge Volume
Run #1 5.0 ml
Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene ^a	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane a	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	102%		72-122%
17060-07-0	1,2-Dichloroethane-D4	109%		68-124%
2037-26-5	Toluene-D8	105%		80-119%
460-00-4	4-Bromofluorobenzene	104%		72-126%

(a) AZ:V1

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: GW-091417-PG-22

 Lab Sample ID:
 TD9149-3
 Date Sampled:
 09/14/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/16/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 Z58509.D 1 09/20/17 00:01 EM n/a n/a VZ5404

Run #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	1.1	1.0	ug/l
75-34-3	1,1-Dichloroethane	2.1	1.0	ug/l
75-35-4	1,1-Dichloroethylene	2.7	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	2.0	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	10.3	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
	e			
1868-53-7	Dibromofluoromethane	99%		72-122%
17060-07-0	1,2-Dichloroethane-D4	106%		68-124%
2037-26-5	Toluene-D8	100%		80-119%
460-00-4	4-Bromofluorobenzene	100%		72-126%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: GW-091417-PG-23

 Lab Sample ID:
 TD9149-4
 Date Sampled:
 09/14/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/16/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Run #1 X01240164.D 1 O9/19/17 03:02 EM n/a Prep Date Prep Batch NX3350
Run #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	1.3	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene a	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	1.4	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	7.7	0.50	ug/l
75-69-4	Trichlorofluoromethane a	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	106%		72-122%
17060-07-0	1,2-Dichloroethane-D4	116%		68-124%
2037-26-5	Toluene-D8	103%		80-119%
460-00-4	4-Bromofluorobenzene	103%		72-126%

(a) AZ:V1

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

SGS

Client Sample ID: GW-091417-PG-24

 Lab Sample ID:
 TD9149-5
 Date Sampled:
 09/14/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/16/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1X01240165.D109/19/17 03:28EMn/an/aVX3350

Run #2

Run #1 5.0 ml Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	1.5	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene a	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	13.0	0.50	ug/l
75-69-4	Trichlorofluoromethane a	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	108%		72-122%
17060-07-0	1,2-Dichloroethane-D4	119%		68-124%
2037-26-5	Toluene-D8	101%		80-119%
460-00-4	4-Bromofluorobenzene	104%		72-126%

(a) AZ:V1

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: GW-091417-PG-25

 Lab Sample ID:
 TD9149-6
 Date Sampled:
 09/14/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/16/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1X01240166.D109/19/17 03:55EMn/an/aVX3350

Run #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	1.6	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene ^a	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	13.1	0.50	ug/l
75-69-4	Trichlorofluoromethane a	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	107%		72-122%
17060-07-0	1,2-Dichloroethane-D4	118%		68-124%
2037-26-5	Toluene-D8	103%		80-119%
460-00-4	4-Bromofluorobenzene	104%		72-126%

(a) AZ:V1

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

SGS

Report of Analysis

Client Sample ID: GW-091517-PG-26

 Lab Sample ID:
 TD9149-7
 Date Sampled:
 09/15/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/16/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 Z58522.D 1 09/20/17 12:06 EM n/a n/a VZ5405

Run #2

Purge Volume
Run #1 5.0 ml
Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	2.2	1.0	ug/l
75-35-4	1,1-Dichloroethylene	5.1	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	2.2	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	8.8	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	97%		72-122%
17060-07-0	1,2-Dichloroethane-D4	103%		68-124%
2037-26-5	Toluene-D8	98%		80-119%
460-00-4	4-Bromofluorobenzene	98%		72-126%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Client Sample ID: TRIP BLANK

 Lab Sample ID:
 TD9149-8
 Date Sampled:
 09/14/17

 Matrix:
 AQ - Trip Blank Water
 Date Received:
 09/16/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

 File ID
 DF
 Analyzed
 By
 Prep Date
 Prep Batch
 Analytical Batch

 Run #1
 X01240168.D
 1
 09/19/17 04:48
 EM
 n/a
 n/a
 VX3350

 Run #2
 VX3350
 VX3350
 VX3350
 VX3350

Purge Volume

Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene ^a	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane ^a	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	106%		72-122%
17060-07-0	1,2-Dichloroethane-D4	117%		68-124%
2037-26-5	Toluene-D8	101%		80-119%
460-00-4	4-Bromofluorobenzene	103%		72-126%

(a) AZ:V1

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- · Arizona Qualifiers
- Chain of Custody

Arizona Qualifiers

Page 1 of 1

Job Number: TD9149

V1

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

The following Arizona qualifiers have been applied to data and/or QC in this report.

Qual	Description
Q9	Insufficient sample received to meet method QC requirements.

CCV recovery was above method acceptance limits. This target analyte was not detected in the sample.

1

Client / Reporting Information

GHD

MANFRED

PATRICK

6w-091517-PG

TRIP

Turnaround Time (Business days)

Sample ID / Field Point / Point of Collection

GW- 091417-PG-

Company Name

Project Contact:

Samplers's Name

Address

Phone #

SGS Accutest Sample ID

2345

10 Day

CHAIN OF CUSTODY

2105 Lundy Ave, San Jose, CA 95131 (408) 588-0200 FAX: (408) 588-0201

Project Information

013932 - 130

bottles

3

3

3

3

3

Commercial "B" - Results with QC summaries

Commercial "A" - Results only

6W 3

Project Name:

City

PLASCHKE

GREENE

20

21

22

23

24

25

26

BLANK

Project #

EMAIL:

Collection

Time

0815

0855

1120 1240

1245

9/15/17 0745

Approved By:/ Date:

9/4/11 0640

Client Purchase Order#

16

ŊΥ											1	of 1
	FED-EX	Tracking 0 L	7078	819	16		Bottle	Order Co	ntrol#			
	SGS Ac	cutest Q	iote#			*****	SGS	Accutest N	C Job#: C	Ta	X	1149
					1	Regue	acted	Analysis				Matrix Codes
		T		20000000000	-	Kequi	T	Allalysis	T	20000000	Γ	WW- Wastewater
	1											GW- Ground Water SW- Surface Water
	+											SO- Soil
	-											OI-Oil WP-Wipe
					~		١,	45				LIQ - Non-aqueous Liquid
l Bottles	8260				ESE		9	ALT				AIR DW- Drinking Water (Perchlorate Only)
MEOH MEOH	aucous Turner				3444 3454 444		1 5	ii oost co				LAB USE ONLY
	X				8184 5184		,					
$\bot \bot$	X				100							
	(X				1			1_				
	X					\mathcal{L}	V	Λ				
44	X							T				
	χ				19	7_		1/	5			
	X				()			
	X											

J Day		Commerical "B+"	" - Results, QC, and	chromatograms	i					
3 Day		FULT1 - Level 4 o	lata package							
2 Day		EDF for Geotraci	er DD F	ormat			***************************************			****
1 Day		Provide EDF Glob	al ID							
Same Day		Provide EDF Logo	ode:							
Emergency T/A data available VIA Lablink					_					
Sample Custody r	nust be documented	d below each time sa	mples change po	ssession, including c	ourier deliver					
Relinquished by Samples	Date Time:	Received By:	νΩ	Relinquished By:	Journel deliver	Date Time:		Received By:		
1 fald (sty	9/15/17/12	En Many	tam	2 asily loe	w	9-15-17	1600	2 Fed Ex		
Relinquished by:	Date Time:	Received By:	11:50	Relinquished By		Date Time:		Received By:		
3 Truex		138817	11409	1617				a	\bigcirc	
Relinquished by:	Date Time:	Received By:		Custody Seal #	Appropriate Bott	le / Pres. Y / N	Headspice Y	N On to	O Y / X	Cooler Temp.
5		5			Labels match Co	c? Y / N	Separate Receiving	g Check List used: Y	_	3.6

Number of preserved

TD9149: Chain of Custody

Page 1 of 4

Form: SM027-06 Rev 10/24/2016

COOLER TEMP FORM Delivered by (circle one): Cient: Cooler Number: Cooler Number: Cooler Number: Cooler Number: SAMPLES CONTAINED IN COOLER SAMPLES CONTAINED IN COOLER	Client Client	91100L#1

TD9149: Chain of Custody Page 2 of 4

SGS Accutest Sample Receipt Summary

Job Number: TD914	9	CI	lient: GHD			Project:			
Date / Time Received:			Delivery	Method	:	Airbill #'s: 770270788196			
No. Coolers: 1	Therm	I D : IR9	;			Temp Adjustment Factor: (0;		
Cooler Temps (Initial/Adjusted): <u>#1:</u>	(3.6/3.6)							
Cooler Security Y	or N			Υ (or N	Sample Integrity - Documentation	<u>Y</u>	or N	
1. Custody Seals Present:			OC Present:	\checkmark		Sample labels present on bottles:	✓		
2. Custody Seals Intact:		4. Smp	ol Dates/Time OK	✓		2. Container labeling complete:	\checkmark		
Cooler Temperature	<u>Y c</u>	or N				3. Sample container label / COC agree:	✓		
1. Temp criteria achieved:	✓					Sample Integrity - Condition	<u>Y</u>	or N	
Cooler temp verification:						Sample recvd within HT:	\checkmark		
Cooler media:	lce	e (Bag)				2. All containers accounted for:	✓		
Quality Control_Preservation	<u>Y</u>	or N	N/A	WTB	STB	Condition of sample:		Intact	
1. Trip Blank present / cooler:	\checkmark			✓		Sample Integrity - Instructions	<u>Y</u>	or N	N/A
2. Trip Blank listed on COC:	✓					Analysis requested is clear:	✓	П	
3. Samples preserved properly:	✓					2. Bottles received for unspecified tests		✓	
4. VOCs headspace free:	✓					3. Sufficient volume recvd for analysis:	✓		
						4. Compositing instructions clear:			✓
						5. Filtering instructions clear:			✓
Comments									

TD9149: Chain of Custody Page 3 of 4

Sample Receipt Log

 Job #:
 TD9149
 Date / Time Received:
 9/16/2017 11:40:00 AM
 Initials:
 DS

Client: GHD

Cooler#	Sample ID:	Vol	Bot #	Location	Pres	pH	Therm ID	Initial Temp	Therm CF	Corrected Temp
1	TD9149-1	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	3.6	0	3.6
1	TD9149-1	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	3.6	0	3.6
1	TD9149-1	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	3.6	0	3.6
1	TD9149-2	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	3.6	0	3.6
1	TD9149-2	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	3.6	0	3.6
1	TD9149-2	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	3.6	0	3.6
1	TD9149-3	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	3.6	0	3.6
1	TD9149-3	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	3.6	0	3.6
1	TD9149-3	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	3.6	0	3.6
1	TD9149-4	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	3.6	0	3.6
1	TD9149-4	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	3.6	0	3.6
1	TD9149-4	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	3.6	0	3.6
1	TD9149-5	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	3.6	0	3.6
1	TD9149-5	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	3.6	0	3.6
1	TD9149-5	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	3.6	0	3.6
1	TD9149-6	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	3.6	0	3.6
1	TD9149-6	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	3.6	0	3.6
1	TD9149-6	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	3.6	0	3.6
1	TD9149-7	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	3.6	0	3.6
1	TD9149-7	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	3.6	0	3.6
1	TD9149-7	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	3.6	0	3.6
	TD9149-8	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9149-8	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				

TD9149: Chain of Custody

Page 4 of 4

Section 5

MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: SW846 8260C

Method Blank Summary

Job Number: TD9149

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VX3350-MB	X01240160.D	1	09/19/17	EM	n/a	n/a	VX3350

The QC reported here applies to the following samples:

TD9149-1, TD9149-2, TD9149-4, TD9149-5, TD9149-6, TD9149-8

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	0.50	ug/l
75-27-4	Bromodichloromethane	ND	0.50	ug/l
67-66-3	Chloroform	ND	0.50	ug/l
75-34-3	1,1-Dichloroethane	ND	0.50	ug/l
75-35-4	1,1-Dichloroethylene	ND	0.50	ug/l
107-06-2	1,2-Dichloroethane	ND	0.50	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	0.50	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	0.50	ug/l
74-83-9	Methyl bromide	ND	0.50	ug/l
74-87-3	Methyl chloride	ND	0.50	ug/l
71-55-6	1,1,1-Trichloroethane	ND	0.50	ug/l
127-18-4	Tetrachloroethylene	ND	0.50	ug/l
108-88-3	Toluene	ND	0.50	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.5	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l

CAS No. Surrogate Recoveries Limits

1868-53-7	Dibromofluoromethane	105%	72-122%
17060-07-0	1,2-Dichloroethane-D4	111%	68-124%
2037-26-5	Toluene-D8	103%	80-119%
460-00-4	4-Bromofluorobenzene	104%	72-126%

Method: SW846 8260C

Method Blank Summary Job Number: TD9149

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	•	Prep Date	Prep Batch	Analytical Batch
VZ5404-MB	Z58490.D	1	09/19/17	EM	n/a	n/a	VZ5404

The QC reported here applies to the following samples:

TD9149-3

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	0.50	ug/l
75-27-4	Bromodichloromethane	ND	0.50	ug/l
67-66-3	Chloroform	ND	0.50	ug/l
75-34-3	1,1-Dichloroethane	ND	0.50	ug/l
75-35-4	1,1-Dichloroethylene	ND	0.50	ug/l
107-06-2	1,2-Dichloroethane	ND	0.50	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	0.50	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	0.50	ug/l
74-83-9	Methyl bromide	ND	0.50	ug/l
74-87-3	Methyl chloride	ND	0.50	ug/l
71-55-6	1,1,1-Trichloroethane	ND	0.50	ug/l
127-18-4	Tetrachloroethylene	ND	0.50	ug/l
108-88-3	Toluene	ND	0.50	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.5	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l

CAS No. **Surrogate Recoveries** Limits 1969 52 7 Dibromofluoromathana 97% 72-122%

1808-55-7	Dibromoffuoromethane	9/%	12-122%
17060-07-0	1,2-Dichloroethane-D4	104%	68-124%
2037-26-5	Toluene-D8	101%	80-119%
460-00-4	4-Bromofluorobenzene	100%	72-126%

Method: SW846 8260C

ige I of I

Job Number: TD9149

Account: CRAAZP GHD Services Inc.

Method Blank Summary

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VZ5405-MB	Z58521.D	1	09/20/17	EM	n/a	n/a	VZ5405

The QC reported here applies to the following samples:

TD9149-7

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	0.50	ug/l
75-27-4	Bromodichloromethane	ND	0.50	ug/l
67-66-3	Chloroform	ND	0.50	ug/l
75-34-3	1,1-Dichloroethane	ND	0.50	ug/l
75-35-4	1,1-Dichloroethylene	ND	0.50	ug/l
107-06-2	1,2-Dichloroethane	ND	0.50	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	0.50	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	0.50	ug/l
74-83-9	Methyl bromide	ND	0.50	ug/l
74-87-3	Methyl chloride	ND	0.50	ug/l
71-55-6	1,1,1-Trichloroethane	ND	0.50	ug/l
127-18-4	Tetrachloroethylene	ND	0.50	ug/l
108-88-3	Toluene	ND	0.50	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.5	ug/l
	m, p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l

CAS No. Surrogate Recoveries Limits

1868-53-7	Dibromofluoromethane	92%	72-122%
17060-07-0	1,2-Dichloroethane-D4	101%	68-124%
2037-26-5	Toluene-D8	99%	80-119%
460-00-4	4-Bromofluorobenzene	101%	72-126%

Method: SW846 8260C

Blank Spike Summary Job Number: TD9149

Account: CRAAZP GHD Services Inc.

52nd Street Superfund Site - OU2 Area, Phoenix, AZ **Project:**

Sample VZ5405-BS	File ID Z58519.D	DF 1	Analyzed 09/20/17	By EM	Prep Date n/a	Prep Batch n/a	Analytical Batch VZ5405

The QC reported here applies to the following samples:

TD9149-7

		Spike	BSP	BSP	
CAS No.	Compound	ug/l	ug/l	%	Limits
71-43-2	Danzana	25	25.9	104	69 110
	Benzene	25			68-119
75-27-4	Bromodichloromethane	25	22.3	89	72-118
67-66-3	Chloroform	25	24.7	99	73-122
75-34-3	1,1-Dichloroethane	25	24.6	98	72-121
75-35-4	1,1-Dichloroethylene	25	25.2	101	67-140
107-06-2	1,2-Dichloroethane	25	23.7	95	68-121
156-59-2	cis-1,2-Dichloroethylene	25	23.4	94	72-117
156-60-5	trans-1,2-Dichloroethylene	25	23.9	96	68-124
74-83-9	Methyl bromide	25	22.4	90	53-138
74-87-3	Methyl chloride	25	24.3	97	50-145
71-55-6	1,1,1-Trichloroethane	25	22.8	91	72-129
127-18-4	Tetrachloroethylene	25	27.5	110	72-132
108-88-3	Toluene	25	27.0	108	73-119
79-01-6	Trichloroethylene	25	25.9	104	73-121
75-69-4	Trichlorofluoromethane	25	22.3	89	46-152
75-01-4	Vinyl chloride	25	25.8	103	54-126
1330-20-7	Xylene (total)	75	80.7	108	74-119
	m,p-Xylene	50	55.1	110	74-119
95-47-6	o-Xylene	25	25.6	102	73-121

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	92%	72-122%
17060-07-0	1,2-Dichloroethane-D4	96%	68-124%
2037-26-5	Toluene-D8	99%	80-119%
460-00-4	4-Bromofluorobenzene	101%	72-126%

^{* =} Outside of Control Limits.

Method: SW846 8260C

Blank Spike/Blank Spike Duplicate Summary

Job Number: TD9149

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
VX3350-BS	X01240157.D	1	09/18/17	EM	n/a	n/a	VX3350
VX3350-BSD a	X01240158.D	1	09/19/17	EM	n/a	n/a	VX3350

The QC reported here applies to the following samples:

TD9149-1, TD9149-2, TD9149-4, TD9149-5, TD9149-6, TD9149-8

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
	-	_	_		_			
71-43-2	Benzene	25	24.8	99	25.2	101	2	68-119/30
75-27-4	Bromodichloromethane	25	25.5	102	26.0	104	2	72-118/30
67-66-3	Chloroform	25	25.0	100	25.0	100	0	73-122/30
75-34-3	1,1-Dichloroethane	25	26.3	105	26.7	107	2	72-121/30
75-35-4	1,1-Dichloroethylene	25	30.6	122	30.3	121	1	67-140/30
107-06-2	1,2-Dichloroethane	25	28.7	115	28.9	116	1	68-121/30
156-59-2	cis-1,2-Dichloroethylene	25	26.3	105	26.8	107	2	72-117/30
156-60-5	trans-1,2-Dichloroethylene	25	26.9	108	26.6	106	1	68-124/30
74-83-9	Methyl bromide	25	24.0	96	25.7	103	7	53-138/30
74-87-3	Methyl chloride	25	25.2	101	27.0	108	7	50-145/30
71-55-6	1,1,1-Trichloroethane	25	27.5	110	27.3	109	1	72-129/30
127-18-4	Tetrachloroethylene	25	23.5	94	23.3	93	1	72-132/30
108-88-3	Toluene	25	25.4	102	25.4	102	0	73-119/30
79-01-6	Trichloroethylene	25	23.7	95	23.7	95	0	73-121/30
75-69-4	Trichlorofluoromethane	25	31.1	124	29.4	118	6	46-152/30
75-01-4	Vinyl chloride	25	26.3	105	27.9	112	6	54-126/30
1330-20-7	Xylene (total)	75	74.9	100	75.3	100	1	74-119/30
	m, p-Xylene	50	51.1	102	51.2	102	0	74-119/30
95-47-6	o-Xylene	25	23.9	96	24.1	96	1	73-121/30

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
1868-53-7	Dibromofluoromethane	109%	109%	72-122%
17060-07-0	1,2-Dichloroethane-D4	110%	112%	68-124%
2037-26-5	Toluene-D8	104%	103%	80-119%
460-00-4	4-Bromofluorobenzene	104%	103%	72-126%

(a) AZ:Q9

^{* =} Outside of Control Limits.

Method: SW846 8260C

Blank Spike/Blank Spike Duplicate Summary

Job Number: TD9149

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Z58487.D	1	09/19/17	EM	n/a	n/a	VZ5404
Z58488.D	1	09/19/17	EM	n/a	n/a	VZ5404
	Z58487.D	Z58487.D 1	Z58487.D 1 09/19/17	Z58487.D 1 09/19/17 EM	Z58487.D 1 09/19/17 EM n/a	Z58487.D 1 09/19/17 EM n/a n/a

The QC reported here applies to the following samples:

TD9149-3

		Spike	BSP	BSP	BSD	BSD		Limits
CAS No.	Compound	ug/l	ug/l	%	ug/l	%	RPD	Rec/RPD
71-43-2	Benzene	25	23.9	96	25.1	100	5	68-119/30
							_	
75-27-4	Bromodichloromethane	25	20.8	83	21.0	84	1	72-118/30
67-66-3	Chloroform	25	23.5	94	23.4	94	0	73-122/30
75-34-3	1,1-Dichloroethane	25	22.8	91	23.3	93	2	72-121/30
75-35-4	1,1-Dichloroethylene	25	22.3	89	22.6	90	1	67-140/30
107-06-2	1,2-Dichloroethane	25	22.7	91	22.6	90	0	68-121/30
156-59-2	cis-1,2-Dichloroethylene	25	21.6	86	22.2	89	3	72-117/30
156-60-5	trans-1,2-Dichloroethylene	25	22.0	88	22.7	91	3	68-124/30
74-83-9	Methyl bromide	25	21.8	87	24.1	96	10	53-138/30
74-87-3	Methyl chloride	25	21.7	87	23.9	96	10	50-145/30
71-55-6	1,1,1-Trichloroethane	25	21.7	87	21.7	87	0	72-129/30
127-18-4	Tetrachloroethylene	25	25.0	100	26.1	104	4	72-132/30
108-88-3	Toluene	25	24.7	99	25.7	103	4	73-119/30
79-01-6	Trichloroethylene	25	24.0	96	24.8	99	3	73-121/30
75-69-4	Trichlorofluoromethane	25	23.3	93	23.1	92	1	46-152/30
75-01-4	Vinyl chloride	25	24.4	98	25.1	100	3	54-126/30
1330-20-7	Xylene (total)	75	74.8	100	76.9	103	3	74-119/30
	m,p-Xylene	50	51.2	102	52.4	105	2	74-119/30
95-47-6	o-Xylene	25	23.6	94	24.5	98	4	73-121/30

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
1868-53-7	Dibromofluoromethane	94%	91%	72-122%
17060-07-0	1,2-Dichloroethane-D4	99%	98%	68-124%
2037-26-5	Toluene-D8	97%	98%	80-119%
460-00-4	4-Bromofluorobenzene	101%	101%	72-126%

(a) AZ:Q9

^{* =} Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: TD9149

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
TD9093-4MS	Z58524.D	10	09/20/17	EM	n/a	n/a	VZ5405
TD9093-4MSD	Z58525.D	10	09/20/17	EM	n/a	n/a	VZ5405
TD9093-4 a	Z58523.D	10	09/20/17	EM	n/a	n/a	VZ5405

The QC reported here applies to the following samples:

Method: SW846 8260C

TD9149-7

CAS No.	Compound	TD9093-4 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	ND	250	167	67*	250	211	84	23*	68-119/12
75-27-4	Bromodichloromethane	ND	250	150	60*	250	184	74	20*	72-118/16
67-66-3	Chloroform	ND	250	171	68*	250	201	80	16*	73-122/13
75-34-3	1,1-Dichloroethane	ND	250	160	64*	250	194	78	19*	72-121/14
75-35-4	1,1-Dichloroethylene	ND	250	161	64*	250	197	79	20*	67-140/18
107-06-2	1,2-Dichloroethane	ND	250	176	70	250	203	81	14*	68-121/12
156-59-2	cis-1,2-Dichloroethylene	6.4	250	166	64*	250	195	75	16*	72-117/13
156-60-5	trans-1,2-Dichloroethylene	ND	250	160	64*	250	191	76	18*	68-124/15
74-83-9	Methyl bromide	ND	250	159	64	250	198	79	22*	53-138/16
74-87-3	Methyl chloride	ND	250	173	69	250	196	78	12	50-145/17
71-55-6	1,1,1-Trichloroethane	ND	250	150	60*	250	184	74	20*	72-129/14
127-18-4	Tetrachloroethylene	ND	250	173	69*	250	219	88	23*	72-132/14
108-88-3	Toluene	ND	250	171	68*	250	215	86	23*	73-119/13
79-01-6	Trichloroethylene	1540	250	1490	-20* b	250	1620	32* b	8	73-121/13
75-69-4	Trichlorofluoromethane	ND	250	171	68	250	190	76	11	46-152/25
75-01-4	Vinyl chloride	ND	250	188	75	250	213	85	12	54-126/17
1330-20-7	Xylene (total)	ND	750	519	69*	750	646	86	22*	74-119/13
	m,p-Xylene	ND	500	351	70*	500	441	88	23*	74-119/13
95-47-6	o-Xylene	ND	250	168	67*	250	205	82	20*	73-121/13
CAS No.	Surrogate Recoveries	MS	MSD	TD	99093-4	Limits				
1868-53-7	Dibromofluoromethane	97%	92%			72-1229	%			
17060-07-0	1,2-Dichloroethane-D4	102%	98%			68-1249	6			
2037-26-5	Toluene-D8	99%	99%			80-1199	%			

⁽a) Sample used for QC purposes only.

4-Bromofluorobenzene

460-00-4

99%

72-126%

102%

⁽b) Outside control limits due to high level in sample relative to spike amount.

^{* =} Outside of Control Limits.

ACCUTEST Gulf Coast

09/27/17

SGS ACCUTEST IS PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.

e-Hardcopy 2.0
Automated Report

Technical Report for

GHD Services Inc.

52nd Street Superfund Site - OU2 Area, Phoenix, AZ

013932

SGS Accutest Job Number: TD9408

Sampling Dates: 09/18/17 - 09/20/17

GHD Services Inc.

4747 N. 22nd Street Second Floor

Phoenix, AZ 85016

manfred.plaschke@ghd.com; mary.cameron@ghd.com;

sheri.finn@ghd.com ATTN: Manfred Plaschke

Total number of pages in report: 29

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Anita Patel 713-271-4700

Certifications: TX (T104704220-17-27) AR (14-016-0) AZ (AZ0769) FL (E87628) KS (E-10366) LA (85695/04004) NJ (TX010) OK (2017-002) VA (8999)

This report shall not be reproduced, except in its entirety, without the written approval of SGS Accutest. Test results relate only to samples analyzed.

Laboratory Director

Sections:

-1-

Table of Contents

Section 1: Sample Summary	
Section 2: Summary of Hits	5
Section 3: Sample Results	7
3.1: TD9408-1: GW-091817-PG-27	8
3.2: TD9408-2: GW-091817-PG-28	9
3.3: TD9408-3: GW-091817-PG-29	10
3.4: TD9408-4: GW-091917-PG-30	11
3.5: TD9408-5: GW-091917-PG-31	12
3.6: TD9408-6: GW-091917-PG-32	13
3.7: TD9408-7: GW-091917-PG-33	14
3.8: TD9408-8: GW-091917-PG-34	15
3.9: TD9408-9: GW-091917-PG-35	16
3.10: TD9408-10: GW-092017-PG-36	17
3.11: TD9408-11: GW-092017-PG-37	18
3.12: TD9408-12: TRIP BLANK	19
Section 4: Misc. Forms	20
4.1: Chain of Custody	21
Section 5: MS Volatiles - QC Data Summaries	26
5.1: Method Blank Summary	27
5.2: Blank Spike Summary	28
5.3: Matrix Spike/Matrix Spike Duplicate Summary	29

Sample Summary

Job No:

TD9408

GHD Services Inc.

52nd Street Superfund Site - OU2 Area, Phoenix, AZ Project No: 013932

Sample Number	Collected Date	Time By	Received	Matri		Client Sample ID
TD9408-1	09/18/17	07:30			Ground Water	GW-091817-PG-27
TD9408-2	09/18/17	08:10	09/21/17	AQ	Ground Water	GW-091817-PG-28
TD9408-3	09/18/17	10:00	09/21/17	AQ	Ground Water	GW-091817-PG-29
TD9408-4	09/19/17	08:15	09/21/17	AQ	Ground Water	GW-091917-PG-30
TD9408-4D	09/19/17	08:15	09/21/17	AQ	Water Dup/MSD	GW-091917-PG-30 MSD
TD9408-4S	09/19/17	08:15	09/21/17	AQ	Water Matrix Spike	GW-091917-PG-30 MS
TD9408-5	09/19/17	09:50	09/21/17	AQ	Ground Water	GW-091917-PG-31
TD9408-6	09/19/17	13:35	09/21/17	AQ	Ground Water	GW-091917-PG-32
TD9408-7	09/19/17	14:25	09/21/17	AQ	Ground Water	GW-091917-PG-33
TD9408-8	09/19/17	15:10	09/21/17	AQ	Ground Water	GW-091917-PG-34
TD9408-9	09/19/17	15:40	09/21/17	AQ	Ground Water	GW-091917-PG-35
TD9408-10	09/20/17	09:50	09/21/17	AQ	Ground Water	GW-092017-PG-36
TD9408-11	09/20/17	11:55	09/21/17	AQ	Ground Water	GW-092017-PG-37

Sample Summary (continued)

GHD Services Inc.

Job No: TD9408

52 nd Street Superfund Site - OU2 Area, Phoenix, AZ Project No: 013932

Sample	Collected			Matrix	Client	
Number	Date	Time By	Received	Code Type	Sample ID	
TD9408-12	09/20/17	00:00	09/21/17	AQ Trip Blank Water	TRIP BLANK	

ACCUTEST

Summary of Hits Job Number: TD9408

GHD Services Inc. Account:

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

09/18/17 thru 09/20/17 **Collected:**

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method			
TD9408-1	TD9408-1 GW-091817-PG-27								
No hits reported	No hits reported in this sample.								
TD9408-2	GW-091817-PG-28	8							
1,1-Dichloroetha 1,1-Dichloroethy	lene	4.0 10.5	1.0 1.0		ug/l ug/l	SW846 8260C SW846 8260C			
cis-1,2-Dichloroe Trichloroethylene		4.4 18.8	1.0 0.50		ug/l ug/l	SW846 8260C SW846 8260C			
TD9408-3	GW-091817-PG-29	9							
Chloroform 1,1-Dichloroethy cis-1,2-Dichloroe Tetrachloroethyle Trichloroethylene	ethylene ene	2.3 2.3 14.0 4.1 61.2	1.0 1.0 1.0 1.0 0.50		ug/l ug/l ug/l ug/l ug/l	SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8260C			
TD9408-4	GW-091917-PG-30	0							
cis-1,2-Dichloroe Trichloroethylene		1.5 28.8	1.0 0.50		ug/l ug/l	SW846 8260C SW846 8260C			
TD9408-5	GW-091917-PG-3	1							
1,1-Dichloroetha 1,1-Dichloroethy cis-1,2-Dichloroe Trichloroethylene	lene ethylene	1.4 5.7 4.1 21.7	1.0 1.0 1.0 0.50		ug/l ug/l ug/l ug/l	SW846 8260C SW846 8260C SW846 8260C SW846 8260C			
TD9408-6	GW-091917-PG-32	2							
1,1-Dichloroethy cis-1,2-Dichloroe Trichloroethylene	ethylene	1.2 8.0 29.9	1.0 1.0 0.50		ug/l ug/l ug/l	SW846 8260C SW846 8260C SW846 8260C			
TD9408-7	GW-091917-PG-33	3							
No hits reported	in this sample.								
TD9408-8	GW-091917-PG-34	4							
Chloroform 1,1-Dichloroetha	ne	3.6 1.6	1.0 1.0		ug/l ug/l	SW846 8260C SW846 8260C			

Summary of Hits Job Number: TD9408

Account: GHD Services Inc.

52nd Street Superfund Site - OU2 Area, Phoenix, AZ **Project:**

Collected: 09/18/17 thru 09/20/17

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL MDI	L Units	Method
1,1-Dichloroethylene	2.5	1.0	ug/l	SW846 8260C
cis-1,2-Dichloroethylene	6.9	1.0	ug/l	SW846 8260C
Tetrachloroethylene	2.7	1.0	ug/l	SW846 8260C
Trichloroethylene	33.3	0.50	ug/l	SW846 8260C
TD9408-9 GW-091917-PG-3	5			
Chloroform	3.1	1.0	ug/l	SW846 8260C
1,1-Dichloroethane	1.7	1.0	ug/l	SW846 8260C
1,1-Dichloroethylene	2.3	1.0	ug/l	SW846 8260C
cis-1,2-Dichloroethylene	6.8	1.0	ug/l	SW846 8260C
Tetrachloroethylene	3.6	1.0	ug/l	SW846 8260C
Trichloroethylene	29.7	0.50	ug/l	SW846 8260C
TD9408-10 GW-092017-PG-3	6			
1,1-Dichloroethane	4.6	1.0	ug/l	SW846 8260C
1,1-Dichloroethylene	17.8	1.0	ug/l	SW846 8260C
cis-1,2-Dichloroethylene	8.8	1.0	ug/l	SW846 8260C
Trichloroethylene	40.4	0.50	ug/l	SW846 8260C
TD9408-11 GW-092017-PG-3	7			
Chloroform	2.4	1.0	ug/l	SW846 8260C
1,1-Dichloroethylene	1.2	1.0	ug/l	SW846 8260C
cis-1,2-Dichloroethylene	4.9	1.0	ug/l	SW846 8260C
Trichloroethylene	37.7	0.50	ug/l	SW846 8260C

TD9408-12 TRIP BLANK

No hits reported in this sample.

Section 3 &

Report of Ana	alysis	

Client Sample ID: GW-091817-PG-27

 Lab Sample ID:
 TD9408-1
 Date Sampled:
 09/18/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/21/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 Z58616.D 1 09/22/17 17:13 EM n/a n/a VZ5408

Run #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	96%		72-122%
17060-07-0	1,2-Dichloroethane-D4	105%		68-124%
2037-26-5	Toluene-D8	99%		80-119%
460-00-4	4-Bromofluorobenzene	100%		72-126%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: GW-091817-PG-28

Purge Volume

 Lab Sample ID:
 TD9408-2
 Date Sampled:
 09/18/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/21/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 Z58617.D 1 09/22/17 17:37 EM n/a n/a VZ5408
Run #2

Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	4.0	1.0	ug/l
75-35-4	1,1-Dichloroethylene	10.5	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	4.4	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	18.8	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	97%		72-122%
17060-07-0	1,2-Dichloroethane-D4	107%		68-124%
2037-26-5	Toluene-D8	98%		80-119%
460-00-4	4-Bromofluorobenzene	101%		72-126%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: GW-091817-PG-29

Lab Sample ID: TD9408-3 **Date Sampled:** 09/18/17 Matrix: **Date Received:** AQ - Ground Water 09/21/17 Method: SW846 8260C **Percent Solids:** n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF **Prep Batch Analytical Batch** Analyzed By **Prep Date** VZ5408 Run #1 Z58618.D 1 09/22/17 18:01 EM n/a n/a Run #2

Purge Volume Run #1 5.0 mlRun #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	2.3	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	2.3	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	14.0	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	4.1	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	61.2	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	98%		72-122%
17060-07-0	1,2-Dichloroethane-D4	105%		68-124%
2037-26-5	Toluene-D8	99%		80-119%
460-00-4	4-Bromofluorobenzene	103%		72-126%

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: GW-091917-PG-30

Lab Sample ID: TD9408-4 **Date Sampled:** 09/19/17 Matrix: AQ - Ground Water **Date Received:** 09/21/17 Method: SW846 8260C Percent Solids: n/a

52nd Street Superfund Site - OU2 Area, Phoenix, AZ **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** VZ5408 Run #1 Z58612.D 1 09/22/17 15:35 EM n/a n/a

Run #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	1.5	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	28.8	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	98%		72-122%
17060-07-0	1,2-Dichloroethane-D4	108%		68-124%
2037-26-5	Toluene-D8	98%		80-119%
460-00-4	4-Bromofluorobenzene	99%		72-126%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: GW-091917-PG-31

 Lab Sample ID:
 TD9408-5
 Date Sampled:
 09/19/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/21/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 Z58619.D 1 09/22/17 18:25 EM n/a n/a VZ5408
Run #2

Purge Volume
Run #1 5.0 ml
Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	1.4	1.0	ug/l
75-35-4	1,1-Dichloroethylene	5.7	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	4.1	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	21.7	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	99%		72-122%
17060-07-0	1,2-Dichloroethane-D4	107%		68-124%
2037-26-5	Toluene-D8	98%		80-119%
460-00-4	4-Bromofluorobenzene	99%		72-126%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Report of Analysis

Client Sample ID: GW-091917-PG-32

 Lab Sample ID:
 TD9408-6
 Date Sampled:
 09/19/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/21/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 Z58620.D 1 09/22/17 18:49 EM n/a n/a VZ5408
Run #2

Purge Volume
Run #1 5.0 ml
Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	1.2	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	8.0	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	29.9	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	98%		72-122%
17060-07-0	1,2-Dichloroethane-D4	109%		68-124%
2037-26-5	Toluene-D8	100%		80-119%
460-00-4	4-Bromofluorobenzene	101%		72-126%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Client Sample ID: GW-091917-PG-33

 Lab Sample ID:
 TD9408-7
 Date Sampled:
 09/19/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/21/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 Z58621.D 1 09/22/17 19:14 EM n/a n/a VZ5408
Run #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
				_
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	97%		72-122%
17060-07-0	1,2-Dichloroethane-D4	107%		68-124%
2037-26-5	Toluene-D8	99%		80-119%
460-00-4	4-Bromofluorobenzene	101%		72-126%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: GW-091917-PG-34

 Lab Sample ID:
 TD9408-8
 Date Sampled:
 09/19/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/21/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 Z58622.D 1 09/22/17 19:38 EM n/a n/a VZ5408
Run #2

Purge Volume
Run #1 5.0 ml
Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	3.6	1.0	ug/l
75-34-3	1,1-Dichloroethane	1.6	1.0	ug/l
75-35-4	1,1-Dichloroethylene	2.5	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	6.9	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	2.7	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	33.3	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	95%		72-122%
17060-07-0	1,2-Dichloroethane-D4	108%		68-124%
2037-26-5	Toluene-D8	98%		80-119%
460-00-4	4-Bromofluorobenzene	98%		72-126%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Report of Analysis

Client Sample ID: GW-091917-PG-35

 Lab Sample ID:
 TD9408-9
 Date Sampled:
 09/19/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/21/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 Z58623.D 1 09/22/17 20:02 EM n/a n/a VZ5408
Run #2

Purge Volume

Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	3.1	1.0	ug/l
75-34-3	1,1-Dichloroethane	1.7	1.0	ug/l
75-35-4	1,1-Dichloroethylene	2.3	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	6.8	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	3.6	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	29.7	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	99%		72-122%
17060-07-0	1,2-Dichloroethane-D4	107%		68-124%
2037-26-5	Toluene-D8	97%		80-119%
460-00-4	4-Bromofluorobenzene	100%		72-126%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

16 of 29 ACCUTEST TD9408

Report of Analysis Page 1 of 1

Client Sample ID: GW-092017-PG-36

 Lab Sample ID:
 TD9408-10
 Date Sampled:
 09/20/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/21/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 Z58624.D 1 09/22/17 20:27 EM n/a n/a VZ5408
Run #2

Purge Volume

5.0 ml

Run #1 Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	4.6	1.0	ug/l
75-35-4	1,1-Dichloroethylene	17.8	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	8.8	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	40.4	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m, p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	99%		72-122%
17060-07-0	1,2-Dichloroethane-D4	107%		68-124%
2037-26-5	Toluene-D8	99%		80-119%
460-00-4	4-Bromofluorobenzene	98%		72-126%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

17 of 29
ACCUTEST

Page 1 of 1

Client Sample ID: GW-092017-PG-37

 Lab Sample ID:
 TD9408-11
 Date Sampled:
 09/20/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/21/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 Z58625.D 1 09/22/17 20:51 EM n/a n/a VZ5408

Run #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	2.4	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	1.2	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	4.9	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	37.7	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	98%		72-122%
17060-07-0	1,2-Dichloroethane-D4	108%		68-124%
2037-26-5	Toluene-D8	99%		80-119%
460-00-4	4-Bromofluorobenzene	100%		72-126%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Client Sample ID: TRIP BLANK

 Lab Sample ID:
 TD9408-12
 Date Sampled:
 09/20/17

 Matrix:
 AQ - Trip Blank Water
 Date Received:
 09/21/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 Z58626.D 1 09/22/17 21:15 EM n/a n/a VZ5408

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	100%		72-122%
17060-07-0	1,2-Dichloroethane-D4	109%		68-124%
2037-26-5	Toluene-D8	98%		80-119%
460-00-4	4-Bromofluorobenzene	100%		72-126%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Section 4

Misc. Forms	
Custody Documents and Other Forms	

666	PHOENIX
9/6	ACCUTEST

CHAIN OF CUSTODY

PAGE | OF |

ACCI	JTEST	10165 Harw	rin Dr, Ste 150 Houston, 271-4700 FAX: 713-2	TX 77036	7103°0831 6079	Bottle Order Control #	2 1:2/2
Client / Reporting Information			www.accutest.com	:/1-4//0	SGS Accutest Quote #	SGS Accutest Job #	1400
Company Name	Project Name:	Project Ir	nformation		Requeste	d Analyses	Matrix Codes
GHD	ou	Z					
Street Address	Street						DW - Drinking Water
City State Zip	City	State (Billing Information (if Company Name	different from Report to)			GW - Ground Water WW - Water
		State	сопрану маше				SW - Surface Water SO - Soil
Project Contact E-mail MAN FRED PLASCHKE	Project # 01393Z - 1	20	Street Address		-		SL- Sludge SED-Sediment
Phone # Fax #	Client Purchase Order #						OI - Oil LIQ - Other Liquid
		1	City	State Zip			AIR - Air SOL - Other Solid
Sampler(s) Name(s) Phone # PATRICK GREENE	Project Manager	A	Attention:				WP - Wipe FB-Field Blank
GREEN C	C	plection		Number of preserved Bottles	_ 3	al	
SGS Accutest				E	2 3		
Secretal ID / Point of Collection	Date Time	Sampled By	Matrix bottles $\frac{\pm}{2}$	ZANAOH HNO3 H2SO4 NONE DI Water MEOH TSP NaHSO4 ENCORE	HE HE		LAB USE ONLY
1 GW-091817-PG-27 1 1 28	9/13/17 0730	PG (GW 3		M. I X	 	EAD OUT ONE!
	0810		1 9		12 1	 	
3 1 29	1000		3		$ \lambda $		
4 GW-091917-PG-30	9/19/17 0815		9		12		1
5 31	0950		5		$\frac{1}{\lambda}$		us/msi)
9 32	1335		5		1× 1		
7 33	1425		3		 	I 3 1	
8 34	1510		3			mo d keed	
9 1 1 35	1540		3			9	
10 GW- 092017- PG-36	9/20/17 0950		3			2 2 	
11 + 1 37	1155		3				
TRIP BLANK		- 1	10 Z		12	+++	
Turnaround Time (Business days)	Approved By (SGS Accutest PM): / Da			ta Deliverable Information		mments / Special Instructions	
5 Day RUSH	Approved by (SGS Accutest PM): / Da	ie: [Commercial "A" Commercial "B"				
4 Day RUSH 3 Day RUSH		[FULT1 (Level 3+	4) Other			
2 Day RUSH			REDT1 (Level 3+	-4)			
1 Day EMERGENCY		"		nmercial "A" = Results Only			
Emergency & Rush T/A data available VIA Lablink		Form: SM021-0	Con	nmercial "B" = Results + QC Summary			
Relinquished by Sampler Date Timer	Sample Custody r	nust be document	ed below each time s	nmercial "C" = Results + QC & Surrog samples change possession, inc	luding courier delivery.		
1 Peter Cillen 9/2		maker	9 179 17 14 S		Q (2c) Date Time:	Received By: 9/20	Date Time:
Relinquished by Sampler: Date Time:	Received By:	Va V		Relinquished By:	Date Time:	Received By:	Date Time:
Relinquished by: Date Time:	Received By:	00/0	Date Time:	4 Custody Seal #		4	1
	5				Intact Preserved where applicable Not intact	On Ice Co	coler Temp. 3 , 9

TD9408: Chain of Custody

Page 1 of 5

TD9408: Chain of Custody Page 2 of 5

Page 1 of 3

SGS Accutest Sample Receipt Summary

Job Number: Ti	D9408	j		Client:	GHD			Project:	OU2				
Date / Time Received: 9/	21/20	17 10	:30:00 /	AM_	Delivery	Method	:	Airbill #'s:	770308316079				
No. Coolers: 1		herm	n ID: IF	R-5;				Temp Adjus	stment Factor:	0;			
Cooler Temps (Initial/Adju	sted):	<u>#1:</u>	(3.9/3.9	9);_									
-	Υo		-				or N	Sample Integrity - Docume	entation	<u>Y</u>	or N		
oddiody oddio i roddini.	✓			COC P		✓		Sample labels present on be	ottles:	✓			
2. Custody Seals Intact:	✓		4. Sr	npi Date	s/Time OK	✓		2. Container labeling complete	э :	✓			
Cooler Temperature		Υc	or N					3. Sample container label / CC	C agree:	\checkmark			
Temp criteria achieved:		\checkmark						Sample Integrity - Conditi	<u>on</u>	<u>Y</u>	or N		
2. Cooler temp verification:3. Cooler media:			- (D)					1. Sample recvd within HT:		✓			
3. Cooler media:		ICE	e (Bag)		-			2. All containers accounted for	r:	\checkmark			
Quality Control_Preservat	<u>ion</u>	<u>Y</u>	or N	N/A		<u>WTB</u>	STB	3. Condition of sample:			ntact		
1. Trip Blank present / cooler	:	✓				\checkmark		Sample Integrity - Instruct	<u>tions</u>	<u>Y</u>	or N	N/A	
2. Trip Blank listed on COC:		\checkmark						Analysis requested is clear		✓			
3. Samples preserved proper	1y:	✓						2. Bottles received for unspec	cified tests		\checkmark		
4. VOCs headspace free:		✓						3. Sufficient volume recvd for	analysis:	✓			
								4. Compositing instructions cl	ear:			\checkmark	
								5. Filtering instructions clear:				\checkmark	
Comments								•					

TD9408: Chain of Custody

Page 3 of 5

4

Sample Receipt Log

Job #: TD9408 **Date / Time Received:** 9/21/2017 10:30:00 AM 10:3 **Initials:** BG

Client: GHD

Cooler #	Sample ID:	Vol	Bot #	Location	Pres	pH	Therm ID	Initial Temp	Therm CF	Corrected Temp
	TD9408-1	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9408-1	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9408-1	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9408-2	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9408-2	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9408-2	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9408-3	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9408-3	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9408-3	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
1	TD9408-4	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.9	0	3.9
1	TD9408-4	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.9	0	3.9
1	TD9408-4	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.9	0	3.9
1	TD9408-4	40ml	4	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.9	0	3.9
1	TD9408-4	40ml	5	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.9	0	3.9
1	TD9408-4	40ml	6	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.9	0	3.9
1	TD9408-4	40ml	7	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.9	0	3.9
1	TD9408-4	40ml	8	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.9	0	3.9
1	TD9408-4	40ml	9	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.9	0	3.9
	TD9408-5	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9408-5	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9408-5	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9408-6	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9408-6	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				

TD9408: Chain of Custody

Page 4 of 5

4

Sample Receipt Log

 Job #:
 TD9408
 Date / Time Received:
 9/21/2017 10:30:00 AM 10:3
 Initials:
 BG

Client: GHD

					_			Initial	Therm	Corrected
Cooler #	Sample ID:	Vol	Bot #	Location	Pres	pН	Therm ID	Temp	CF	Temp
	TD9408-6	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9408-7	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9408-7	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9408-7	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9408-8	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9408-8	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9408-8	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9408-9	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9408-9	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9408-9	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9408-10	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9408-10	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9408-10	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9408-11	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9408-11	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9408-11	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9408-12	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TD9408-12	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				

TD9408: Chain of Custody

Page 5 of 5

Section 5

MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: SW846 8260C

ປ

Method Blank Summary

Job Number: TD9408

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VZ5408-MB	Z58607.D	1	09/22/17	EM	n/a	n/a	VZ5408

The QC reported here applies to the following samples:

 $TD9408-1,\ TD9408-2,\ TD9408-3,\ TD9408-4,\ TD9408-5,\ TD9408-6,\ TD9408-7,\ TD9408-8,\ TD9408-9,\ TD9408-10,\ TD9408-11,\ TD9408-12$

Limits

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	0.50	ug/l
75-27-4	Bromodichloromethane	ND	0.50	ug/l
67-66-3	Chloroform	ND	0.50	ug/l
75-34-3	1,1-Dichloroethane	ND	0.50	ug/l
75-35-4	1,1-Dichloroethylene	ND	0.50	ug/l
107-06-2	1,2-Dichloroethane	ND	0.50	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	0.50	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	0.50	ug/l
74-83-9	Methyl bromide	ND	0.50	ug/l
74-87-3	Methyl chloride	ND	0.50	ug/l
71-55-6	1,1,1-Trichloroethane	ND	0.50	ug/l
127-18-4	Tetrachloroethylene	ND	0.50	ug/l
108-88-3	Toluene	ND	0.50	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.5	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
75-35-4 107-06-2 156-59-2 156-60-5 74-83-9 74-87-3 71-55-6 127-18-4 108-88-3 79-01-6 75-69-4 75-01-4 1330-20-7	1,1-Dichloroethylene 1,2-Dichloroethane cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene Methyl bromide Methyl chloride 1,1,1-Trichloroethane Tetrachloroethylene Toluene Trichloroethylene Trichlorofluoromethane Vinyl chloride Xylene (total) m,p-Xylene	ND N	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 1.0 0.50 1.5 1.0	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l

01101	Surrogute Recoveries		Ziiiii		
1868-53-7	Dibromofluoromethane	98%	72-122%		
17060-07-0	1,2-Dichloroethane-D4	107%	68-124%		
2037-26-5	Toluene-D8	101%	80-119%		
460-00-4	4-Bromofluorobenzene	101%	72-126%		

Surrogate Recoveries

CAS No.

Method: SW846 8260C

Blank Spike Summary

Job Number: TD9408

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample VZ5408-BS	File ID Z58605.D	DF 1	Analyzed 09/22/17	By EM	Prep Date n/a	Prep Batch n/a	Analytical Batch VZ5408

The QC reported here applies to the following samples:

TD9408-1, TD9408-2, TD9408-3, TD9408-4, TD9408-5, TD9408-6, TD9408-7, TD9408-8, TD9408-9, TD9408-10, TD9408-11, TD9408-12

		Spike	BSP	BSP	
CAS No.	Compound	ug/l	ug/l	%	Limits
71-43-2	Benzene	25	25.3	101	68-119
75-27-4	Bromodichloromethane	25	22.3	89	72-118
67-66-3	Chloroform	25	24.9	100	73-122
75-34-3	1,1-Dichloroethane	25	23.7	95	72-121
75-35-4	1,1-Dichloroethylene	25	25.0	100	67-140
107-06-2	1,2-Dichloroethane	25	24.9	100	68-121
156-59-2	cis-1,2-Dichloroethylene	25	23.0	92	72-117
156-60-5	trans-1,2-Dichloroethylene	25	23.8	95	68-124
74-83-9	Methyl bromide	25	21.4	86	53-138
74-87-3	Methyl chloride	25	22.3	89	50-145
71-55-6	1,1,1-Trichloroethane	25	23.5	94	72-129
127-18-4	Tetrachloroethylene	25	28.0	112	72-132
108-88-3	Toluene	25	27.0	108	73-119
79-01-6	Trichloroethylene	25	26.4	106	73-121
75-69-4	Trichlorofluoromethane	25	25.7	103	46-152
75-01-4	Vinyl chloride	25	27.4	110	54-126
1330-20-7	Xylene (total)	75	82.6	110	74-119
	m, p-Xylene	50	56.5	113	74-119
95-47-6	o-Xylene	25	26.2	105	73-121

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	92%	72-122%
17060-07-0	1,2-Dichloroethane-D4	103%	68-124%
2037-26-5	Toluene-D8	100%	80-119%
460-00-4	4-Bromofluorobenzene	101%	72-126%

^{* =} Outside of Control Limits.

Page 1 of 1

Method: SW846 8260C

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: TD9408

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
TD9408-4MS	Z58613.D	1	09/22/17	EM	n/a	n/a	VZ5408
TD9408-4MSD	Z58614.D	1	09/22/17	EM	n/a	n/a	VZ5408
TD9408-4	Z58612.D	1	09/22/17	EM	n/a	n/a	VZ5408

The QC reported here applies to the following samples:

TD9408-1, TD9408-2, TD9408-3, TD9408-4, TD9408-5, TD9408-6, TD9408-7, TD9408-8, TD9408-9, TD9408-10, TD9408-11, TD9408-12

			TD9408-4	Spike	MS	MS	Spike	Spike MSD MSD			Limits
	CAS No.	Compound	ug/l Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
	71-43-2	Benzene	ND	25	24.3	97	25	25.2	101	4	68-119/12
	75-27-4	Bromodichloromethane	ND	25	21.7	87	25	22.6	90	4	72-118/16
	67-66-3	Chloroform	ND	25	24.2	97	25	24.1	96	0	73-122/13
	75-34-3	1,1-Dichloroethane	ND	25	22.6	90	25	23.3	93	3	72-121/14
	75-35-4	1,1-Dichloroethylene	ND	25	23.7	95	25	24.1	96	2	67-140/18
	107-06-2	1,2-Dichloroethane	ND	25	24.0	96	25	24.5	98	2	68-121/12
	156-59-2	cis-1,2-Dichloroethylene	1.5	25	23.8	89	25	24.0	90	1	72-117/13
	156-60-5	trans-1,2-Dichloroethylene	ND	25	22.9	92	25	23.2	93	1	68-124/15
	74-83-9	Methyl bromide	ND	25	19.2	77	25	21.3	85	10	53-138/16
	74-87-3	Methyl chloride	ND	25	21.3	85	25	21.6	86	1	50-145/17
	71-55-6	1,1,1-Trichloroethane	ND	25	22.7	91	25	22.7	91	0	72-129/14
	127-18-4	Tetrachloroethylene	ND	25	26.6	106	25	26.7	107	0	72-132/14
	108-88-3	Toluene	ND	25	25.6	102	25	25.7	103	0	73-119/13
	79-01-6	Trichloroethylene	28.8	25	53.4	98	25	53.9	100	1	73-121/13
	75-69-4	Trichlorofluoromethane	ND	25	24.4	98	25	24.5	98	0	46-152/25
	75-01-4	Vinyl chloride	ND	25	26.6	106	25	27.3	109	3	54-126/17
	1330-20-7	Xylene (total)	ND	75	79.5	106	75	79.1	105	1	74-119/13
		m,p-Xylene	ND	50	54.0	108	50	54.0	108	0	74-119/13
	95-47-6	o-Xylene	ND	25	25.5	102	25	25.1	100	2	73-121/13
	CAS No.	Surrogate Recoveries	MS	MSD	Tl	D9408-4	Limits				
		J									
	1868-53-7	Dibromofluoromethane	94%	93%	98	%	72-1229	%			
	17060-07-0	1,2-Dichloroethane-D4	104%	100%	10	8%	68-1249	%			
	2037-26-5	Toluene-D8	100%	99%	98	%	80-1199	%			

0120 1101	241108400 11000 101100	1,10	1.102	127.00	
1868-53-7	Dibromofluoromethane	94%	93%	98%	72-122%
17060-07-0	1,2-Dichloroethane-D4	104%	100%	108%	68-124%
2037-26-5	Toluene-D8	100%	99%	98%	80-119%
460-00-4	4-Bromofluorobenzene	99%	101%	99%	72-126%

^{* =} Outside of Control Limits.

ACCUTEST Gulf Coast

10/02/17

SGS ACCUTEST IS PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.

e-Hardcopy 2.0
Automated Report

Technical Report for

GHD Services Inc.

52nd Street Superfund Site - OU2 Area, Phoenix, AZ

013932

SGS Accutest Job Number: TD9543

Sampling Dates: 09/21/17 - 09/22/17

GHD Services Inc.

4747 N. 22nd Street Second Floor

Phoenix, AZ 85016

manfred.plaschke@ghd.com; mary.cameron@ghd.com;

sheri.finn@ghd.com ATTN: Manfred Plaschke

Total number of pages in report: 37

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Anita Patel 713-271-4700

Certifications: TX (T104704220-17-27) AR (14-016-0) AZ (AZ0769) FL (E87628) KS (E-10366) LA (85695/04004) NJ (TX010) OK (2017-002) VA (8999)

This report shall not be reproduced, except in its entirety, without the written approval of SGS Accutest. Test results relate only to samples analyzed.

Laboratory Director

Sections:

-1-

Table of Contents

Section 1: Sample Summary	3
Section 2: Summary of Hits	5
Section 3: Sample Results	
3.1: TD9543-1: GW-092117-PG-38	8
3.2: TD9543-2: GW-092117-PG-39	9
3.3: TD9543-3: GW-092117-PG-40	10
3.4: TD9543-4: GW-092117-PG-41	11
3.5: TD9543-5: GW-092117-PG-42	12
3.6: TD9543-6: GW-092117-PG-43	13
3.7: TD9543-7: GW-092117-PG-44	14
3.8: TD9543-8: GW-092217-PG-45	15
3.9: TD9543-9: GW-092217-PG-46	16
3.10: TD9543-10: GW-092217-PG-47	17
3.11: TD9543-11: GW-092217-PG-48	18
3.12: TD9543-12: TRIP BLANK	19
Section 4: Misc. Forms	20
4.1: Arizona Qualifiers	
4.2: Chain of Custody	
Section 5: MS Volatiles - QC Data Summaries	28
5.1: Method Blank Summary	29
5.2: Blank Spike Summary	32
5.3: Matrix Spike/Matrix Spike Duplicate Summary	35

Sample Summary

GHD Services Inc.

TD9543

Job No:

52nd Street Superfund Site - OU2 Area, Phoenix, AZ Project No: 013932

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
TD9543-1	09/21/17	07:10	09/23/17	AQ	Ground Water	GW-092117-PG-38
TD9543-2	09/21/17	08:25	09/23/17	AQ	Ground Water	GW-092117-PG-39
TD9543-3	09/21/17	08:40	09/23/17	AQ	Ground Water	GW-092117-PG-40
TD9543-4	09/21/17	10:10	09/23/17	AQ	Ground Water	GW-092117-PG-41
TD9543-4D	09/21/17	10:10	09/23/17	AQ	Water Dup/MSD	GW-092117-PG-41 MSD
TD9543-4S	09/21/17	10:10	09/23/17	AQ	Water Matrix Spike	GW-092117-PG-41 MS
TD9543-5	09/21/17	12:15	09/23/17	AQ	Ground Water	GW-092117-PG-42
TD9543-6	09/21/17	12:20	09/23/17	AQ	Ground Water	GW-092117-PG-43
TD9543-7	09/21/17	13:30	09/23/17	AQ	Ground Water	GW-092117-PG-44
TD9543-8	09/22/17	06:45	09/23/17	AQ	Ground Water	GW-092217-PG-45
TD9543-9	09/22/17	07:35	09/23/17	AQ	Ground Water	GW-092217-PG-46
TD9543-10	09/22/17	09:15	09/23/17	AQ	Ground Water	GW-092217-PG-47
TD9543-11	09/22/17	09:50	09/23/17	AQ	Ground Water	GW-092217-PG-48

Sample Summary (continued)

GHD Services Inc.

Job No: TD9543

52 nd Street Superfund Site - OU2 Area, Phoenix, AZ Project No: 013932

Sample	Collected	Collected		Matrix	Client	
Number	Date	Time By	Received	l Code Type	Sample ID	
TD9543-12	09/21/17	00:00	09/23/17	AQ Trip Blank Water	TRIP BLANK	

ACCUTEST

Summary of Hits Job Number: TD9543

GHD Services Inc. Account:

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Collected: $09/21/17\ thru\ 09/22/17$

Lab Sample ID (Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
TD9543-1	GW-092117-PG-38	3				
1,1-Dichloroethane 1,1-Dichloroethylene cis-1,2-Dichloroethylene Tetrachloroethylene Trichloroethylene		6.1 13.3 10.8 1.2 56.7	1.0 1.0 1.0 1.0 0.50		ug/l ug/l ug/l ug/l ug/l	SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8260C
TD9543-2 O	GW-092117-PG-39	,				
_	GW-092117-PG-40)				
Chloroform 1,1-Dichloroethylene cis-1,2-Dichloroethylene Tetrachloroethylene Trichloroethylene		2.4 2.9 12.8 2.9 60.6	1.0 1.0 1.0 1.0 0.50		ug/l ug/l ug/l ug/l ug/l	SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8260C
TD9543-4	GW-092117-PG-41	Ĺ				
1,1-Dichloroethylene cis-1,2-Dichloroethylene Tetrachloroethylene Trichloroethylene		1.8 9.7 2.0 51.9	1.0 1.0 1.0 0.50		ug/l ug/l ug/l ug/l	SW846 8260C SW846 8260C SW846 8260C SW846 8260C
TD9543-5	GW-092117-PG-42	2				
Chloroform 1,1-Dichloroethylene cis-1,2-Dichloroethylene Tetrachloroethylene Trichloroethylene		2.8 3.1 15.2 2.3 82.4	1.0 1.0 1.0 1.0 0.50		ug/l ug/l ug/l ug/l ug/l	SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8260C
TD9543-6	GW-092117-PG-43	3				
Chloroform 1,1-Dichloroethyler cis-1,2-Dichloroethyler Tetrachloroethylere Trichloroethylere	ylene	2.8 3.2 15.9 2.3 82.8	1.0 1.0 1.0 1.0 0.50		ug/l ug/l ug/l ug/l ug/l	SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8260C

Summary of Hits

Job Number: TD9543

Account: GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

19.6

515

Collected: 09/21/17 thru 09/22/17

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method	
TD9543-7	GW-092117-PG-4	4					
Chloroform		5.1	1.0		ug/l	SW846 8260C	
1,1-Dichloroethy	ene	8.1	1.0		ug/l	SW846 8260C	
cis-1,2-Dichloroe	thylene	37.9	1.0		ug/l	SW846 8260C	
Tetrachloroethyle	ne	5.2	1.0		ug/l	SW846 8260C	
Trichloroethylene	;	116	0.50		ug/l	SW846 8260C	
TD9543-8 No hits reported in	GW-092217-PG-4.	5					
TD9543-9	GW-092217-PG-4	6					
1,1-Dichloroethy	ene	1.4	1.0		ug/l	SW846 8260C	
cis-1,2-Dichloroe	thylene	11.2	1.0		ug/l	SW846 8260C	
Tetrachloroethyle	ne	4.6	1.0		ug/l	SW846 8260C	
Trichloroethylene	;	187	0.50		ug/l	SW846 8260C	
TD9543-10	GW-092217-PG-4	7					
No hits reported i	n this sample.						
	CIV 002215 DC 4	8					
TD9543-11	GW-092217-PG-4						
TD9543-11 1,1-Dichloroethy		23.3	4.0		ug/l	SW846 8260C	

4.0

2.0

TD9543-12 TRIP BLANK

Tetrachloroethylene

Trichloroethylene

No hits reported in this sample.

SW846 8260C

SW846 8260C

ug/1

ug/1

Section 3 &

Sample Results	
Report of Analysis	
report of Tildrysis	

Client Sample ID: GW-092117-PG-38

 Lab Sample ID:
 TD9543-1
 Date Sampled:
 09/21/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/23/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	Z58879.D	1	09/29/17 06:18	ZQ	n/a	n/a	VZ5418
Run #2	K356834.D	1	09/29/17 15:37	EM	n/a	n/a	VK2103

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	6.1	1.0	ug/l
75-35-4	1,1-Dichloroethylene	13.3 a	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND a	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	10.8 a	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene ^b	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	1.2	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	56.7	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	94%	98%	72-122%
17060-07-0	1,2-Dichloroethane-D4	108%	106%	68-124%
2037-26-5	Toluene-D8	96%	111%	80-119%
460-00-4	4-Bromofluorobenzene	98%	101%	72-126%

⁽a) Result is from Run# 2

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

⁽b) CCV recovery was below method acceptance criteria. Low check standard confirms detectability. AZ:N1

Page 1 of 1

Client Sample ID: GW-092117-PG-39

 Lab Sample ID:
 TD9543-2
 Date Sampled:
 09/21/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/23/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 Z58880.D 1 09/29/17 06:44 ZQ n/a n/a VZ5418
Run #2

Purge Volume
Run #1 5.0 ml
Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane ^a	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene ^a	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene ^a	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene ^a	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	97%		72-122%
17060-07-0	1,2-Dichloroethane-D4	111%		68-124%
2037-26-5	Toluene-D8	95%		80-119%
460-00-4	4-Bromofluorobenzene	98%		72-126%

(a) CCV recovery was below method acceptance criteria. Low check standard confirms detectability. AZ:N1

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: GW-092117-PG-40

 Lab Sample ID:
 TD9543-3
 Date Sampled:
 09/21/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/23/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	Z58881.D	1	09/29/17 07:08	ZQ	n/a	n/a	VZ5418
Run #2	K356835.D	1	09/29/17 16:01	EM	n/a	n/a	VK2103

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	2.4	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	2.9 a	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND a	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	12.8 a	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene b	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	2.9	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	60.6	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	97%	97%	72-122%
17060-07-0	1,2-Dichloroethane-D4	111%	107%	68-124%
2037-26-5	Toluene-D8	97%	110%	80-119%
460-00-4	4-Bromofluorobenzene	97%	101%	72-126%

⁽a) Result is from Run# 2

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) CCV recovery was below method acceptance criteria. Low check standard confirms detectability. AZ:N1

Page 1 of 1

Client Sample ID: GW-092117-PG-41

 Lab Sample ID:
 TD9543-4
 Date Sampled:
 09/21/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/23/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	Z58874.D	1	09/29/17 04:15	ZQ	n/a	n/a	VZ5418
Run #2	K356836.D	1	09/29/17 16:26	EM	n/a	n/a	VK2103

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml

CAS No.	Compound	Result	RL	Units Q	
71-43-2	Benzene	ND	1.0	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	ug/l	
67-66-3	Chloroform	ND	1.0	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l	
75-35-4	1,1-Dichloroethylene	1.8 a	1.0	ug/l	
107-06-2	1,2-Dichloroethane	ND a	1.0	ug/l	
156-59-2	cis-1,2-Dichloroethylene	9.7 a	1.0	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	ug/l	
74-87-3	Methyl chloride	ND	2.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l	
127-18-4	Tetrachloroethylene	2.0	1.0	ug/l	
108-88-3	Toluene	ND	1.0	ug/l	
79-01-6	Trichloroethylene	51.9	0.50	ug/l	
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l	
75-01-4	Vinyl chloride	ND	0.50	ug/l	
1330-20-7	Xylene (total)	ND	1.0	ug/l	
	m,p-Xylene	ND	1.0	ug/l	
95-47-6	o-Xylene	ND	0.50	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
1868-53-7	Dibromofluoromethane	92%	96%	72-122%	
17060-07-0	1,2-Dichloroethane-D4	109%	107%	68-124%	
2037-26-5	Toluene-D8	97%	111%	80-119%	
460-00-4	4-Bromofluorobenzene	98%	103%	03% 72-126%	

(a) Result is from Run# 2

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

11 of 37 ACCUTEST TD9543

Page 1 of 1

Report of Analysis

Client Sample ID: GW-092117-PG-42

 Lab Sample ID:
 TD9543-5
 Date Sampled:
 09/21/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/23/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	Z58882.D	1	09/29/17 07:32	ZQ	n/a	n/a	VZ5418
Run #2	K356837.D	1	09/29/17 16:50	EM	n/a	n/a	VK2103

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml

CAS No.	Compound	Result	RL	Units Q	
71-43-2	Benzene	ND	1.0	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	ug/l	
67-66-3	Chloroform	2.8	1.0	ug/l	
75-34-3	1,1-Dichloroethane ^a	ND	1.0	ug/l	
75-35-4	1,1-Dichloroethylene	3.1 b	1.0	ug/l	
107-06-2	1,2-Dichloroethane	ND b	1.0	ug/l	
156-59-2	cis-1,2-Dichloroethylene	15.2 b	1.0	ug/l	
156-60-5	trans-1,2-Dichloroethylene ^a	ND	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	ug/l	
74-87-3	Methyl chloride	ND	2.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l	
127-18-4	Tetrachloroethylene	2.3	1.0	ug/l	
108-88-3	Toluene	ND	1.0	ug/l	
79-01-6	Trichloroethylene	82.4	0.50	ug/l	
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l	
75-01-4	Vinyl chloride	ND	0.50	ug/l	
1330-20-7	Xylene (total)	ND	1.0	ug/l	
	m,p-Xylene	ND	1.0	ug/l	
95-47-6	o-Xylene	ND	0.50	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
1868-53-7	Dibromofluoromethane	95%	98%	72-122%	
17060-07-0	1,2-Dichloroethane-D4	108%	108%	68-124%	
2037-26-5	Toluene-D8	96%	110%	80-119%	
460-00-4	4-Bromofluorobenzene	97%	103%	72-126%	

(a) CCV recovery was below method acceptance criteria. Low check standard confirms detectability. AZ:N1

(b) Result is from Run# 2

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

12 of 37 ACCUTEST TD9543

Client Sample ID: GW-092117-PG-43

 Lab Sample ID:
 TD9543-6
 Date Sampled:
 09/21/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/23/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	Z58883.D	1	09/29/17 07:56	ZQ	n/a	n/a	VZ5418
Run #2	K356838.D	1	09/29/17 17:15	EM	n/a	n/a	VK2103

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml

CAS No.	Compound	Result	RL	Units Q	
71-43-2	Benzene	ND	1.0	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	ug/l	
67-66-3	Chloroform	2.8	1.0	ug/l	
75-34-3	1,1-Dichloroethane ^a	ND	1.0	ug/l	
75-35-4	1,1-Dichloroethylene	3.2 b	1.0	ug/l	
107-06-2	1,2-Dichloroethane	ND b	1.0	ug/l	
156-59-2	cis-1,2-Dichloroethylene	15.9 b	1.0	ug/l	
156-60-5	trans-1,2-Dichloroethylene ^a	ND	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	ug/l	
74-87-3	Methyl chloride	ND	2.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l	
127-18-4	Tetrachloroethylene	2.3	1.0	ug/l	
108-88-3	Toluene	ND	1.0	ug/l	
79-01-6	Trichloroethylene	82.8	0.50	ug/l	
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l	
75-01-4	Vinyl chloride	ND	0.50	ug/l	
1330-20-7	Xylene (total)	ND	1.0	ug/l	
	m,p-Xylene	ND	1.0	ug/l	
95-47-6	o-Xylene	ND	0.50	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
1868-53-7	Dibromofluoromethane	94%	98%	72-122%	
17060-07-0	1,2-Dichloroethane-D4	109%	108%	68-124%	
2037-26-5	Toluene-D8	94%	110%	80-119%	
460-00-4	4-Bromofluorobenzene	95%	102%	72-126%	

(a) CCV recovery was below method acceptance criteria. Low check standard confirms detectability. AZ:N1

(b) Result is from Run# 2

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Report of Analysis

Client Sample ID: GW-092117-PG-44

Lab Sample ID: TD9543-7 **Date Sampled:** 09/21/17 Matrix: AQ - Ground Water **Date Received:** 09/23/17 Method: SW846 8260C Percent Solids: n/a

52nd Street Superfund Site - OU2 Area, Phoenix, AZ **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	Z58884.D	1	09/29/17 08:20	ZQ	n/a	n/a	VZ5418
Run #2	K356839.D	1	09/29/17 17:39	EM	n/a	n/a	VK2103

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	5.1	1.0	ug/l
75-34-3	1,1-Dichloroethane ^a	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	8.1 b	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND b	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	37.9 b	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene ^a	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	5.2	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	116	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	97%	99%	72-122%
17060-07-0	1,2-Dichloroethane-D4	110%	109%	68-124%
2037-26-5	Toluene-D8	96%	110%	80-119%
460-00-4	4-Bromofluorobenzene	98%	101%	72-126%

(a) CCV recovery was below method acceptance criteria. Low check standard confirms detectability. AZ:N1

(b) Result is from Run# 2

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ACCUTEST

Client Sample ID: GW-092217-PG-45

Lab Sample ID: TD9543-8 **Date Sampled:** 09/22/17 Matrix: AQ - Ground Water **Date Received:** 09/23/17 Method: SW846 8260C Percent Solids: n/a

52nd Street Superfund Site - OU2 Area, Phoenix, AZ **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** VZ5418 Run #1 Z58885.D 1 09/29/17 08:44 ZQ n/an/aRun #2

Purge Volume Run #1 5.0 ml Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane ^a	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene ^a	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene ^a	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene ^a	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	96%		72-122%
17060-07-0	1,2-Dichloroethane-D4	109%		68-124%
2037-26-5	Toluene-D8	95%		80-119%
460-00-4	4-Bromofluorobenzene	98%		72-126%

⁽a) CCV recovery was below method acceptance criteria. Low check standard confirms detectability. AZ:N1

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: GW-092217-PG-46

 Lab Sample ID:
 TD9543-9
 Date Sampled:
 09/22/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/23/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 G0277038.D 1 10/02/17 12:56 ZQ n/a n/a VG2488

Run #2

Purge Volume
Run #1 5.0 ml
Run #2

CAS No.	Compound	Result	RL	Units Q	
71-43-2	Benzene	ND	1.0	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	ug/l	
67-66-3	Chloroform	ND	1.0	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l	
75-35-4	1,1-Dichloroethylene	1.4	1.0	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l	
156-59-2	cis-1,2-Dichloroethylene	11.2	1.0	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	ug/l	
74-87-3	Methyl chloride	ND	2.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l	
127-18-4	Tetrachloroethylene	4.6	1.0	ug/l	
108-88-3	Toluene	ND	1.0	ug/l	
79-01-6	Trichloroethylene	187	0.50	ug/l	
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l	
75-01-4	Vinyl chloride	ND	0.50	ug/l	
1330-20-7	Xylene (total)	ND	1.0	ug/l	
	m,p-Xylene	ND	1.0	ug/l	
95-47-6	o-Xylene	ND	0.50	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
1868-53-7	Dibromofluoromethane	96%		72-122%	
17060-07-0	1,2-Dichloroethane-D4	92%		68-124%	
2037-26-5	Toluene-D8	102%	80-119%		
460-00-4	4-Bromofluorobenzene	94%		72-126%	

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

16 of 37
ACCUTEST
TD9543

Client Sample ID: GW-092217-PG-47

Purge Volume

 Lab Sample ID:
 TD9543-10
 Date Sampled:
 09/22/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/23/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

 File ID
 DF
 Analyzed
 By
 Prep Date
 Prep Batch
 Analytical Batch

 Run #1
 Z58887.D
 1
 09/29/17 09:34 ZQ
 n/a
 n/a
 VZ5418

 Run #2
 VZ5418
 VZ5418
 VZ5418
 VZ5418

Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane ^a	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene ^a	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene ^a	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene ^a	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	94%		72-122%
17060-07-0	1,2-Dichloroethane-D4	110%		68-124%
2037-26-5	Toluene-D8	96%		80-119%
460-00-4	4-Bromofluorobenzene	99%		72-126%

(a) CCV recovery was below method acceptance criteria. Low check standard confirms detectability. AZ:N1

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

17 of 37
ACCUTEST
TD9543

Page 1 of 1

Report of Analysis

Client Sample ID: GW-092217-PG-48

 Lab Sample ID:
 TD9543-11
 Date Sampled:
 09/22/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/23/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	Z58888.D	4	09/29/17 09:59	ZQ	n/a	n/a	VZ5418
Run #2	K356840.D	4	09/29/17 18:04	EM	n/a	n/a	VK2103

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml

CAS No.	Compound	Result	RL	Units Q	
71-43-2	Benzene	ND	4.0	ug/l	
75-27-4	Bromodichloromethane	ND	4.0	ug/l	
67-66-3	Chloroform	ND	4.0	ug/l	
75-34-3	1,1-Dichloroethane ^a	ND	4.0	ug/l	
75-35-4	1,1-Dichloroethylene	23.3 b	4.0	ug/l	
107-06-2	1,2-Dichloroethane	ND b	4.0	ug/l	
156-59-2	cis-1,2-Dichloroethylene	142 b	4.0	ug/l	
156-60-5	trans-1,2-Dichloroethylene ^a	ND	4.0	ug/l	
74-83-9	Methyl bromide	ND	8.0	ug/l	
74-87-3	Methyl chloride	ND	8.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	4.0	ug/l	
127-18-4	Tetrachloroethylene	19.6	4.0	ug/l	
108-88-3	Toluene	ND	4.0	ug/l	
79-01-6	Trichloroethylene	515	2.0	ug/l	
75-69-4	Trichlorofluoromethane	ND	16	ug/l	
75-01-4	Vinyl chloride	ND	2.0	ug/l	
1330-20-7	Xylene (total)	ND	4.0	ug/l	
	m,p-Xylene	ND	4.0	ug/l	
95-47-6	o-Xylene	ND	2.0	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
1868-53-7	Dibromofluoromethane	93%	99%	72-122%	
17060-07-0	1,2-Dichloroethane-D4	108%	110%	68-124%	
2037-26-5	Toluene-D8	96%	110%	80-119%	
460-00-4	4-Bromofluorobenzene	96%	101%	72-126%	

(a) CCV recovery was below method acceptance criteria. Low check standard confirms detectability. AZ:N1

(b) Result is from Run# 2

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Client Sample ID: TRIP BLANK

 Lab Sample ID:
 TD9543-12
 Date Sampled:
 09/21/17

 Matrix:
 AQ - Trip Blank Water
 Date Received:
 09/23/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1	Z58878.D	1	09/29/17 05:53	ZQ	n/a	n/a	VZ5418

Run #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane a	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene ^a	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene a	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene ^a	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	94%		72-122%
17060-07-0	1,2-Dichloroethane-D4	105%		68-124%
2037-26-5	Toluene-D8	97%		80-119%
460-00-4	4-Bromofluorobenzene	97%		72-126%

⁽a) CCV recovery was below method acceptance criteria. Low check standard confirms detectability. AZ:N1

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

19 of 37 ACCUTEST TD9543

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- · Arizona Qualifiers
- Chain of Custody

Arizona Qualifiers

Page 1 of 1

Job Number: TD9543

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

The following Arizona qualifiers have been applied to data and/or QC in this report.

Qual Description	
------------------	--

N1 See case narrative.

PHOENIX

CHAIN OF CUSTODY

PAGE	1	OF	
------	---	----	--

	69	ACCU	TES	ST		10165 Ha	rwin Dr.	Stc 150 H	ousto	n. TX	770	36				E	ED-EX	Tracking	773	3 35	(58		Bottle O	rder Co	atrol#			
				_			3-271-47	00 FAX	: 713							S	GS Acc	cutest Ou	iote#		, , ,	**********	SGS Ac	cutest J	ab#	TT	0	1542
Client /	Reporting Information					Project			Join											Red	ues	ted	Ana	lvse		لِـــــــا	1	Matrix Codes
Company Name			Projec	Name:							-											T			Г	\Box		
	GHD																											
Street Address			Street																									DW - Drinking Water GW - Ground Water
City	State	Zip	City	WW		State		Informat ny Name	ion (if diff	eren	from I	Repoi	rt to)		-												WW - Water SW - Surface Water
																												SO - Soil SL- Sludge
Project Contact MANFRED	E-mai PLASCHKE	I	Project	.# 	3932-130	>	Street Address						1											SED-Sediment OI - Oil				
Phone #	Fax#		Client I	Purchase		***************************************	City					State			Zip	\dashv												LIQ - Other Liquid AIR - Air
						***									,		1										ļ	SOL - Other Solid WP - Wipe
Sampler(s) Name(s)	GREENE	Phone #	Project	Manager			Attentio	n:									00										ĺ	FB-Field Blank
TATELLE CALCULA					Collec	tion	1		Τ		Nui	nber of p	presen	ved Bott	les		N										ĺ	
SGS Accutest								# of	Π	I S	S GH	8 4	reter (ater	I	SOM		00											
	Field ID / Point of Collect		-	Date	Time	Sampled By	Matrix	bottles	豆	OBN S	HNO.	H2SO MONE	DIW	MEOF	NaH ENC	ОТНЕЯ												LAB USE ONLY
\ GW-	692117-16-3	8	9/2	1/17	0710	PG	600	3	1			Ш	L				X											
2 1		19			0825			3	Ц								X											
3	4	10			0840			3	Ш						П		X											,
4	4				1010			9		Т	T	П					X											MSMSD
511		12			1215			3			Τ	П	Τ	П	П	П	X											
6		13			1220			3	П		Τ	П	T	П		П	Х											
7 '	, L	14	-	٠ ٦	1330			3	П			П	T	П	П	П	Х											
\$ 6W-	092217- PG - L	15	9/1	2/17	0645			3	П	T	T	TT	T	П			X.											
	1 1 "	16		i	0735			3	П	T	T	П	T	П		П	X											
9 13	i.	17			0915			3	П	T	T	П	T	П	Ш		χ											
1 1	1 4	18	-	-	0950)		3	Ш	T	T	П	T	П			Х									7	1	
12 TRI	P BLANIL		-				wa	Z		T	T	П		\sqcap		IT	X	.e2	-	60s. 16 7	Es 1				6			
	around Time (Business days)											verable			~~~				163	GF	i)	200	nonian	Cpeci	al leaker	étione		<u> </u>
Standard 5 Day RU			Approve	d By (SGS	Accutest PM): / Date:		Chamana	Commer						<u> </u>	RRP DD Fori	mat												
4 Day RU	USH							FULT1 (~)			Other	mat										1		-
3 Day RU							-	REDT1 ()							1/2	्र	£	(A 1	- Kb V			#	4		
1 Day EA								Commer			nerci	al "A" =	Resu	uits Oni	v			V	YEV.	HE K	EAS.	45	. * -w			-		
	& Rush T/A data available VIA	Lablink								Comr	nerci	al "B" =	Resu	ılts + C	IC Summ			Ì							-			
	n a 1			San	nple Custody mu	Form: SM021- ist be docum		elow eac							C & Surression, in				deliver	y.								
Relinquished By Syn	niptel	Date Time:	22/17	1150	Received By: 1 ashlur t			Date Tim	: 11	SO	-				reum					Date Tir			Receive	By:	6	a ·		Date Time:
Relinquished by San	mpier: VA	Date Time:	.01	10	Received By:	00000		9/22				linquish			rum		7/	12/	-	16 Date Tir			2 Received		EX		122/	17 1600 Date Time:
Relinguished by:	yesgx	Date Time	11/	1000	Receive Name	$\overline{}$	\prec	Date Time			4	stody Se	nol #			□ Inta	oet.		Preserve			ble	4	-,-	00.7			
5	,		ľ		5	1)	Jace 1m	-		l'u	atouy St	rett #			O No	out tintact		rreserve	d where	арриса	nie			On key	_	Cooler	Temp.

TD9543: Chain of Custody Page 1 of 6

		1944					ii \$51'5 i 15 i 155 a 1 115m a s s	1:E1 NEWH E47C1/FF19/9661	8 qe255 913765
2		_	al da Date 9 122		Custod				
5	1	4	CCUTEST	v S9	5				
TC# TD9543						яёа ГТОТТ гар-хт НАІ		SGRA	
ĭ		M				400:21	YADAUTAS Javo ytiroirq	8386 6773	PEC EXX
COOLER TEMP FORM	ALGC Driver Client	c C C Corrected Temp, O Consected Temp, O Consecuence	W.	J. H.	\$		VAGGIITA 2		Form:
-	FedEx/Ups	CF, °C		1486	# 900		The state of the s	,	
AGEUTEST	Delivered by (circle one): Date: Client:	Cooler Number: Thermometer ID:	411 40 M	35	3	25	46 45 46 45 46 45 46 46 46 46 46 46 46 46 46 46 46 46 46		

TD9543: Chain of Custody Page 2 of 6

SGS Accutest Laboratories Sample Receipt Summary

Job Number: TD9	543		Client:	GHD			Project: 8260			
Date / Time Received: 9/23	/2017 1	0:00:00	AM_	Delivery Me	thod:	:	Airbill #'s: 770327733858			
No. Coolers: 1	Therr	m ID: IF	R-5;				Temp Adjustment Factor:	0;		
Cooler Temps (Initial/Adjust	ed): <u>#</u> 1	1: (0.8/0.	8);_							
	or N	_	. COC P	_		or N	Sample Integrity - Documentation	<u>Y</u>	or N	
1. Custody Seals Present:					∨		Sample labels present on bottles:	✓		
2. Custody Seals Intact: ✓	J L] 4.01	прі Бак	S/TIME OR	\checkmark		Container labeling complete:	✓		
Cooler Temperature	<u>Y</u>	or N					Sample container label / COC agree:		\checkmark	
1. Temp criteria achieved:	✓						Sample Integrity - Condition	<u>Y</u>	or N	
Cooler temp verification:							Sample recvd within HT:	✓		
3. Cooler media:	lc	ce (Bag)					2. All containers accounted for:	✓		
Quality Control Preservation	<u>n Y</u>	or N	N/A	<u>w</u>	/TB	STB	3. Condition of sample:		Intact	
1. Trip Blank present / cooler:	✓			[✓		Sample Integrity - Instructions	<u>Y</u>	or N	N/A
2. Trip Blank listed on COC:	✓						Analysis requested is clear:	~		
3. Samples preserved properly:	✓						2. Bottles received for unspecified tests		✓	
4. VOCs headspace free:	✓						3. Sufficient volume recvd for analysis:	✓		
							4. Compositing instructions clear:			\checkmark
							5. Filtering instructions clear:			✓
Comments COC says gw-0922	217-pg 46	6 but bott	le label :	says pg-45. Dat	te and	I time mate	ch 09-22-17/0735.			

TD9543: Chain of Custody Page 3 of 6

Page 1 of 4

Job Number:	TD9543		
CSR:		Response Date:	
Response:			

Problem Resolution

TD9543: Chain of Custody Page 4 of 6

Sample Receipt Log

 Job #:
 TD9543
 Date / Time Received:
 9/23/2017 10:00:00 AM
 Initials:
 EC

Client: GHD

Cooler#	Sample ID:	ample ID: Vol		Location	Pres	pH	Therm ID	Initial Temp	Therm CF	Corrected Temp
1	TD9543-1	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	0.8	0	0.8
1	TD9543-1	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	0.8	0	0.8
1	TD9543-1	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	0.8	0	0.8
1	TD9543-2	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	0.8	0	0.8
1	TD9543-2	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	0.8	0	0.8
1	TD9543-2	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	0.8	0	0.8
1	TD9543-3	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	0.8	0	0.8
1	TD9543-3	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	0.8	0	0.8
1	TD9543-3	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	0.8	0	0.8
1	TD9543-4	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	0.8	0	0.8
1	TD9543-4	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	0.8	0	0.8
1	TD9543-4	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	0.8	0	0.8
1	TD9543-4	40ml	4	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	0.8	0	0.8
1	TD9543-4	40ml	5	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	0.8	0	0.8
1	TD9543-4	40ml	6	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	0.8	0	0.8
1	TD9543-4	40ml	7	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	0.8	0	0.8
1	TD9543-4	40ml	8	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	0.8	0	0.8
1	TD9543-4	40ml	9	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	0.8	0	0.8
1	TD9543-5	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	0.8	0	0.8
1	TD9543-5	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	0.8	0	0.8
1	TD9543-5	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	0.8	0	0.8
1	TD9543-6	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.		0.8	0	0.8
1	TD9543-6	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.		0.8	0	0.8
1	TD9543-6	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	0.8	0	0.8

TD9543: Chain of Custody Page 5 of 6

Sample Receipt Log

 Job #:
 TD9543
 Date / Time Received:
 9/23/2017 10:00:00 AM
 Initials:
 EC

Client: GHD

Cooler #	Sample ID:	Vol	Bot#	Location	Pres	рН	Therm ID	Initial Temp	Therm CF	Corrected Temp
1	TD9543-7	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	8.0	0	0.8
1	TD9543-7	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	0.8	0	0.8
1	TD9543-7	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	0.8	0	0.8
1	TD9543-8	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	8.0	0	0.8
1	TD9543-8	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	8.0	0	0.8
1	TD9543-8	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	8.0	0	0.8
1	TD9543-9	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	8.0	0	0.8
1	TD9543-9	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	8.0	0	0.8
1	TD9543-9	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	8.0	0	0.8
1	TD9543-10	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	0.8	0	0.8
1	TD9543-10	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	8.0	0	0.8
1	TD9543-10	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	0.8	0	0.8
1	TD9543-11	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	8.0	0	0.8
1	TD9543-11	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	0.8	0	0.8
1	TD9543-11	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	0.8	0	0.8
1	TD9543-12	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.		0.8	0	0.8
1	TD9543-12	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	8.0	0	0.8

TD9543: Chain of Custody Page 6 of 6

Section 5

MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: SW846 8260C

C

Method Blank Summary

Job Number: TD9543

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VZ5418-MB	Z58873.D	1	09/29/17	ZQ	n/a	n/a	VZ5418

The QC reported here applies to the following samples:

 $TD9543-1,\ TD9543-2,\ TD9543-3,\ TD9543-4,\ TD9543-5,\ TD9543-6,\ TD9543-7,\ TD9543-8,\ TD9543-10,\ TD9543-11,\ TD9543-12$

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	0.50	ug/l
75-27-4	Bromodichloromethane	ND	0.50	ug/l
67-66-3	Chloroform	ND	0.50	ug/l
75-34-3	1,1-Dichloroethane	ND	0.50	ug/l
75-35-4	1,1-Dichloroethylene	ND	0.50	ug/l
107-06-2	1,2-Dichloroethane	ND	0.50	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	0.50	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	0.50	ug/l
74-83-9	Methyl bromide	ND	0.50	ug/l
74-87-3	Methyl chloride	ND	0.50	ug/l
71-55-6	1,1,1-Trichloroethane	ND	0.50	ug/l
127-18-4	Tetrachloroethylene	ND	0.50	ug/l
108-88-3	Toluene	ND	0.50	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.5	ug/l
	m, p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	94%	72-122%
17060-07-0	1,2-Dichloroethane-D4	108%	68-124%
2037-26-5	Toluene-D8	99%	80-119%
460-00-4	4-Bromofluorobenzene	98%	72-126%

Method: SW846 8260C

Method Blank Summary

Job Number: TD9543

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample VK2103-MB	File ID K356829.D	DF 1	Analyzed 09/29/17	By EM	Prep Date n/a	Prep Batch n/a	Analytical Batch VK2103

The QC reported here applies to the following samples:

TD9543-1, TD9543-3, TD9543-4, TD9543-5, TD9543-6, TD9543-7, TD9543-11

CAS No.	Compound	Result	RL	Units	Q
75-35-4 107-06-2 156-59-2	1,1-Dichloroethylene 1,2-Dichloroethane cis-1,2-Dichloroethylene	ND ND ND	0.50 0.50 0.50	ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries		Limits		
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	97% 106% 111% 102%	72-1229 68-1249 80-1199 72-1269	% %	

Method: SW846 8260C

Method Blank Summary

Job Number: TD9543

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VG2488-MB	G0277032.D	1	10/02/17	ZQ	n/a	n/a	VG2488

The QC reported here applies to the following samples:

TD9543-9

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	0.50	ug/l
75-27-4	Bromodichloromethane	ND	0.50	ug/l
67-66-3	Chloroform	ND	0.50	ug/l
75-34-3	1,1-Dichloroethane	ND	0.50	ug/l
75-35-4	1,1-Dichloroethylene	ND	0.50	ug/l
107-06-2	1,2-Dichloroethane	ND	0.50	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	0.50	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	0.50	ug/l
74-83-9	Methyl bromide	ND	0.50	ug/l
74-87-3	Methyl chloride	ND	0.50	ug/l
71-55-6	1,1,1-Trichloroethane	ND	0.50	ug/l
127-18-4	Tetrachloroethylene	ND	0.50	ug/l
108-88-3	Toluene	ND	0.50	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.5	ug/l
	m, p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l

CAS No. Surrogate Recoveries Limits

1868-53-7	Dibromofluoromethane	97%	72-122%
17060-07-0	1,2-Dichloroethane-D4	93%	68-124%
2037-26-5	Toluene-D8	102%	80-119%
460-00-4	4-Bromofluorobenzene	95%	72-126%

Method: SW846 8260C

Blank Spike Summary

Job Number: TD9543

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample VZ5418-BS	File ID Z58870.D	DF 1	Analyzed 09/29/17	By ZQ	Prep Date n/a	Prep Batch n/a	Analytical Batch VZ5418

The QC reported here applies to the following samples:

 $TD9543-1,\ TD9543-2,\ TD9543-3,\ TD9543-4,\ TD9543-5,\ TD9543-6,\ TD9543-7,\ TD9543-8,\ TD9543-10,\ TD9543-11,\ TD9543-12$

		Spike	BSP	BSP	
CAS No.	Compound	ug/l	ug/l	%	Limits
71-43-2	Benzene	25	23.2	93	68-119
75-27-4	Bromodichloromethane	25	22.4	90	72-118
67-66-3	Chloroform	25	22.6	90	73-122
75-34-3	1,1-Dichloroethane	25	21.1	84	72-121
75-35-4	1,1-Dichloroethylene	25	22.1	88	67-140
107-06-2	1,2-Dichloroethane	25	24.2	97	68-121
156-59-2	cis-1,2-Dichloroethylene	25	20.8	83	72-117
156-60-5	trans-1,2-Dichloroethylene	25	20.8	83	68-124
74-83-9	Methyl bromide	25	19.6	78	53-138
74-87-3	Methyl chloride	25	16.8	67	50-145
71-55-6	1,1,1-Trichloroethane	25	21.8	87	72-129
127-18-4	Tetrachloroethylene	25	25.8	103	72-132
108-88-3	Toluene	25	24.5	98	73-119
79-01-6	Trichloroethylene	25	24.0	96	73-121
75-69-4	Trichlorofluoromethane	25	24.6	98	46-152
75-01-4	Vinyl chloride	25	18.5	74	54-126
1330-20-7	Xylene (total)	75	76.9	103	74-119
	m,p-Xylene	50	52.3	105	74-119
95-47-6	o-Xylene	25	24.6	98	73-121

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	93%	72-122%
17060-07-0	1,2-Dichloroethane-D4	102%	68-124%
2037-26-5	Toluene-D8	99%	80-119%
460-00-4	4-Bromofluorobenzene	96%	72-126%

^{* =} Outside of Control Limits.

Method: SW846 8260C

Blank Spike Summary Job Number: TD9543

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample VK2103-BS	File ID K356826.D	DF	Analyzed 09/29/17	By EM	Prep Date	Prep Batch n/a	Analytical Batch VK2103

The QC reported here applies to the following samples:

TD9543-1, TD9543-3, TD9543-4, TD9543-5, TD9543-6, TD9543-7, TD9543-11

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
75-35-4	1,1-Dichloroethylene	25	24.0	96	67-140
107-06-2	1,2-Dichloroethane	25	21.3	85	68-121
156-59-2	cis-1,2-Dichloroethylene	25	21.8	87	72-117

CAS No.	Surrogate Recoveries	BSP	Limits
17060-07-0	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	99% 105% 111%	72-122% 68-124% 80-119%
460-00-4	4-Bromofluorobenzene	102%	72-126%

^{* =} Outside of Control Limits.

Method: SW846 8260C

Blank Spike Summary Job Number: TD9543

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VG2488-BS	G0277030.D	1	10/02/17	ZQ	n/a	n/a	VG2488

The QC reported here applies to the following samples:

TD9543-9

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
0120 1101	compound		8/-	, 0	
71-43-2	Benzene	25	21.8	87	68-119
75-27-4	Bromodichloromethane	25	21.2	85	72-118
67-66-3	Chloroform	25	21.1	84	73-122
75-34-3	1,1-Dichloroethane	25	23.0	92	72-121
75-35-4	1,1-Dichloroethylene	25	20.6	82	67-140
107-06-2	1,2-Dichloroethane	25	20.7	83	68-121
156-59-2	cis-1,2-Dichloroethylene	25	23.1	92	72-117
156-60-5	trans-1,2-Dichloroethylene	25	22.7	91	68-124
74-83-9	Methyl bromide	25	21.4	86	53-138
74-87-3	Methyl chloride	25	19.6	78	50-145
71-55-6	1,1,1-Trichloroethane	25	22.1	88	72-129
127-18-4	Tetrachloroethylene	25	23.2	93	72-132
108-88-3	Toluene	25	22.1	88	73-119
79-01-6	Trichloroethylene	25	22.2	89	73-121
75-69-4	Trichlorofluoromethane	25	20.9	84	46-152
75-01-4	Vinyl chloride	25	21.4	86	54-126
1330-20-7	Xylene (total)	75	65.8	88	74-119
	m, p-Xylene	50	44.3	89	74-119
95-47-6	o-Xylene	25	21.4	86	73-121

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	97%	72-122%
17060-07-0	1,2-Dichloroethane-D4	93%	68-124%
2037-26-5	Toluene-D8	100%	80-119%
460-00-4	4-Bromofluorobenzene	97%	72-126%

^{* =} Outside of Control Limits.

Method: SW846 8260C

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: TD9543

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
TD9543-4MS	Z58875.D	1	09/29/17	ZQ	n/a	n/a	VZ5418
TD9543-4MSD	Z58876.D	1	09/29/17	ZQ	n/a	n/a	VZ5418
TD9543-4	Z58874.D	1	09/29/17	ZQ	n/a	n/a	VZ5418

The QC reported here applies to the following samples:

 $TD9543-1,\ TD9543-2,\ TD9543-3,\ TD9543-4,\ TD9543-5,\ TD9543-6,\ TD9543-7,\ TD9543-8,\ TD9543-10,\ TD9543-11,\ TD9543-12$

		TD9543-4	Spike	MS	MS	Spike	MSD MSD		Limits	
CAS No.	Compound	ug/l (ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
	_				0.0			101		
71-43-2	Benzene	ND	25	22.5	90	25	26.1	104	15*	68-119/12
75-27-4	Bromodichloromethane	ND	25	21.2	85	25	24.4	98	14	72-118/16
67-66-3	Chloroform	0.51	25	22.6	88	25	27.0	106	18*	73-122/13
75-34-3	1,1-Dichloroethane	0.75	25	20.8	80	25	24.8	96	18*	72-121/14
75-35-4	1,1-Dichloroethylene	1.3	25	23.7	90	25	29.0	111	20*	67-140/18
107-06-2	1,2-Dichloroethane	ND	25	23.3	93	25	26.3	105	12	68-121/12
156-59-2	cis-1,2-Dichloroethylene	7.8	25	26.8	76	25	31.5	95	16*	72-117/13
156-60-5	trans-1,2-Dichloroethylene	ND	25	20.5	82	25	23.9	96	15	68-124/15
74-83-9	Methyl bromide	ND	25	23.3	93	25	31.5	126	30*	53-138/16
74-87-3	Methyl chloride	ND	25	17.1	68	25	23.8	95	33*	50-145/17
71-55-6	1,1,1-Trichloroethane	ND	25	20.2	81	25	23.2	93	14	72-129/14
127-18-4	Tetrachloroethylene	2.0	25	28.3	105	25	32.2	121	13	72-132/14
108-88-3	Toluene	ND	25	24.0	96	25	27.5	110	14*	73-119/13
79-01-6	Trichloroethylene	51.9	25	73.0	84	25	82.4	122* a	12	73-121/13
75-69-4	Trichlorofluoromethane	ND	25	27.2	109	25	35.0	140	25	46-152/25
75-01-4	Vinyl chloride	ND	25	19.6	78	25	26.2	105	29*	54-126/17
1330-20-7	Xylene (total)	ND	75	74.5	99	75	84.5	113	13	74-119/13
	m,p-Xylene	ND	50	50.8	102	50	57.7	115	13	74-119/13
95-47-6	o-Xylene	ND	25	23.7	95	25	26.8	107	12	73-121/13
	•									
CAS No.	Surrogate Recoveries	MS	MSD	TD:	9543-4	Limits				

CAS No.	Surrogate Recoveries	MS	MSD	TD9543-4	Limits
1868-53-7	Dibromofluoromethane	90%	93%	92%	72-122%
17060-07-0	1,2-Dichloroethane-D4	102%	100%	109%	68-124%
2037-26-5	Toluene-D8	97%	96%	97%	80-119%
460-00-4	4-Bromofluorobenzene	97%	98%	98%	72-126%

(a) Outside control limits due to high level in sample relative to spike amount.

^{* =} Outside of Control Limits.

Method: SW846 8260C

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: TD9543

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
TD9319-2MS	K356831.D	10	09/29/17	EM	n/a	n/a	VK2103
TD9319-2MSD	K356832.D	10	09/29/17	EM	n/a	n/a	VK2103
TD9319-2 a	K356830.D	10	09/29/17	EM	n/a	n/a	VK2103

The QC reported here applies to the following samples:

TD9543-1, TD9543-3, TD9543-4, TD9543-5, TD9543-6, TD9543-7, TD9543-11

CAS No.	Compound	TD9319-2 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
75-35-4 107-06-2 156-59-2	1,1-Dichloroethylene 1,2-Dichloroethane cis-1,2-Dichloroethylene	26.1 ND 9.1	250 250 250	267 217 229	96 87 88	250 250 250	280 224 242	102 90 93	5 3 6	67-140/18 68-121/12 72-117/13
CAS No.	Surrogate Recoveries	MS	MSD	TD:	9319-2	Limits				
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	100% 108% 111% 103%	98% 105% 111% 104%			72-1229 68-1249 80-1199 72-1269	6 6			

⁽a) Sample used for QC purposes only.

^{* =} Outside of Control Limits.

Method: SW846 8260C

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: TD9543

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
TD9319-7MS	G0277039.D	10	10/02/17	ZQ	n/a	n/a	VG2488
TD9319-7MSD	G0277040.D	10	10/02/17	ZQ	n/a	n/a	VG2488
TD9319-7	G0277036.D	10	10/02/17	ZQ	n/a	n/a	VG2488

The QC reported here applies to the following samples:

TD9543-9

			TD9319-7	Spike	MS MS		Spike MSD		MSD		Limits	
	CAS No.	Compound	ug/l Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD	
	71-43-2	Benzene	ND	250	217	87	250	226	90	4	68-119/12	
	75-27-4	Bromodichloromethane	ND	250	207	83	250	218	87	5	72-118/16	
	67-66-3	Chloroform	ND	250	215	86	250	224	90	4	73-122/13	
	75-34-3	1,1-Dichloroethane	ND	250	231	92	250	239	96	3	72-121/14	
	75-35-4	1,1-Dichloroethylene	708	250	866	63* a	250	958	100	10	67-140/18	
	107-06-2	1,2-Dichloroethane	ND	250	206	82	250	215	86	4	68-121/12	
	156-59-2	cis-1,2-Dichloroethylene	148	250	372	90	250	403	102	8	72-117/13	
	156-60-5	trans-1,2-Dichloroethylene	ND	250	227	91	250	237	95	4	68-124/15	
	74-83-9	Methyl bromide	ND	250	258	103	250	282	113	9	53-138/16	
	74-87-3	Methyl chloride	ND	250	242	97	250	260	104	7	50-145/17	
	71-55-6	1,1,1-Trichloroethane	1300	250	1460	64* a	250	1640	136* a	12	72-129/14	
	127-18-4	Tetrachloroethylene	575	250	771	78	250	851	110	10	72-132/14	
	108-88-3	Toluene	ND	250	220	88	250	232	93	5	73-119/13	
	79-01-6	Trichloroethylene	1300	250	1470	68* a	250	1640	136* a	11	73-121/13	
	75-69-4	Trichlorofluoromethane	ND	250	266	106	250	283	113	6	46-152/25	
	75-01-4	Vinyl chloride	ND	250	265	106	250	287	115	8	54-126/17	
	1330-20-7	Xylene (total)	ND	750	651	87	750	682	91	5	74-119/13	
		m,p-Xylene	ND	500	438	88	500	459	92	5	74-119/13	
	95-47-6	o-Xylene	ND	250	213	85	250	223	89	5	73-121/13	
	CAS No.	Surrogate Recoveries	MS	MSD	TD9	319-7	Limits					
	1060 52 7	Dibromoflyonomothere	070/	070/	000/		72 1220	/				

CAS No.	Surrogate Recoveries	MS	MSD	TD9319-7	Limits
1868-53-7	Dibromofluoromethane	97%	97%	98%	72-122%
17060-07-0	1,2-Dichloroethane-D4	93%	93%	92%	68-124%
2037-26-5	Toluene-D8	100%	101%	102%	80-119%
460-00-4	4-Bromofluorobenzene	98%	97%	95%	72-126%

(a) Outside control limits due to high level in sample relative to spike amount.

^{* =} Outside of Control Limits.

ACCUTEST Gulf Coast

10/05/17

SGS ACCUTEST IS PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.

e-Hardcopy 2.0
Automated Report

Technical Report for

GHD Services Inc.

52nd Street Superfund Site - OU2 Area, Phoenix, AZ

013932

SGS Accutest Job Number: TD9826

Sampling Dates: 09/26/17 - 09/27/17

GHD Services Inc.

4747 N. 22nd Street Second Floor

Phoenix, AZ 85016

manfred.plaschke@ghd.com; mary.cameron@ghd.com;

sheri.finn@ghd.com; brooks.dillard@ghd.com

ATTN: Manfred Plaschke

Total number of pages in report: 28

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Anita Patel 713-271-4700

Certifications: TX (T104704220-17-27) AR (14-016-0) AZ (AZ0769) FL (E87628) KS (E-10366) LA (85695/04004) NJ (TX010) OK (2017-002) VA (8999)

This report shall not be reproduced, except in its entirety, without the written approval of SGS Accutest. Test results relate only to samples analyzed.

Laboratory Director

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	4
Section 3: Sample Results	6
3.1: TD9826-1: GW-092517-PG-49	7
3.2: TD9826-2: GW-092517-PG-50	8
3.3: TD9826-3: GW-092517-PG-51	9
3.4: TD9826-4: GW-092617-PG-52	10
3.5: TD9826-5: GW-092617-PG-53	11
3.6: TD9826-6: GW-092617-PG-54	12
3.7: TD9826-7: GW-092617-PG-55	13
3.8: TD9826-8: GW-092717-PG-56	14
3.9: TD9826-9: GW-092717-PG-57	15
3.10: TD9826-10: GW-092717-PG-58	16
3.11: TD9826-11: GW-092717-PG-59	17
3.12: TD9826-12: TRIP BLANK	18
Section 4: Misc. Forms	19
4.1: Arizona Qualifiers	20
4.2: Chain of Custody	21
Section 5: MS Volatiles - QC Data Summaries	26
5.1: Method Blank Summary	27
5.2: Blank Spike/Blank Spike Duplicate Summary	28

Sample Summary

GHD Services Inc.

TD9826

Job No:

52nd Street Superfund Site - OU2 Area, Phoenix, AZ Project No: 013932

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
TD9826-1	09/27/17	08:40	09/28/17	AQ	Ground Water	GW-092517-PG-49
TD9826-2	09/27/17	10:15	09/28/17	AQ	Ground Water	GW-092517-PG-50
TD9826-3	09/27/17	13:30	09/28/17	AQ	Ground Water	GW-092517-PG-51
TD9826-4	09/26/17	08:30	09/28/17	AQ	Ground Water	GW-092617-PG-52
TD9826-5	09/26/17	09:45	09/28/17	AQ	Ground Water	GW-092617-PG-53
TD9826-6	09/26/17	10:45	09/28/17	AQ	Ground Water	GW-092617-PG-54
TD9826-7	09/26/17	13:30	09/28/17	AQ	Ground Water	GW-092617-PG-55
TD9826-8	09/27/17	08:30	09/28/17	AQ	Ground Water	GW-092717-PG-56
TD9826-9	09/27/17	11:30	09/28/17	AQ	Ground Water	GW-092717-PG-57
TD9826-10	09/27/17	14:20	09/28/17	AQ	Ground Water	GW-092717-PG-58
TD9826-11	09/27/17	14:25	09/28/17	AQ	Ground Water	GW-092717-PG-59
TD9826-12	09/27/17	00:00	09/28/17	AQ	Trip Blank Water	TRIP BLANK

Summary of Hits Job Number: TD9826

Account: GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Collected: 09/26/17 thru 09/27/17

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method						
TD9826-1	GW-092517-PG-4	9										
No hits reported	No hits reported in this sample.											
TD9826-2	GW-092517-PG-5	0										
No hits reported in this sample.												
TD9826-3	GW-092517-PG-5	1										
1,1-Dichloroethy Trichloroethylen		2.4 2.7	1.0 0.50		ug/l ug/l	SW846 8260C SW846 8260C						
TD9826-4	GW-092617-PG-5	2										
Trichloroethylen	e	3.3	0.50		ug/l	SW846 8260C						
TD9826-5	GW-092617-PG-5	3										
No hits reported in this sample.												
TD9826-6	GW-092617-PG-5	4										
Trichloroethylen	e	2.5	0.50		ug/l	SW846 8260C						
TD9826-7	GW-092617-PG-5	5										
Chloroform Trichloroethylen	e	1.1 2.6	1.0 0.50		ug/l ug/l	SW846 8260C SW846 8260C						
TD9826-8	GW-092717-PG-5	6										
1,1-Dichloroethy cis-1,2-Dichloroe Trichloroethylen	ethylene	5.2 3.0 13.2	1.0 1.0 0.50		ug/l ug/l ug/l	SW846 8260C SW846 8260C SW846 8260C						
TD9826-9	GW-092717-PG-5	7										
Chloroform Trichloroethylen	e	5.0 13.3	1.0 0.50		ug/l ug/l	SW846 8260C SW846 8260C						
TD9826-10	GW-092717-PG-5	8										
cis-1,2-Dichloroe Trichloroethylen		1.1 36.7	1.0 0.50		ug/l ug/l	SW846 8260C SW846 8260C						

Summary of Hits Job Number: TD9826

Account: GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Collected: 09/26/17 thru 09/27/17

Lab Sample ID Client Sample ID	Result/				
Analyte	Qual	RL	MDL	Units	Method

TD9826-11 GW-092717-PG-59

cis-1,2-Dichloroethylene	1.0	1.0	ug/l	SW846 8260C
Trichloroethylene	34.8	0.50	ug/l	SW846 8260C

TD9826-12 TRIP BLANK

No hits reported in this sample.

Section 3 &

Report of Ana	alysis	
1	J	

Client Sample ID: GW-092517-PG-49

 Lab Sample ID:
 TD9826-1
 Date Sampled:
 09/27/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/28/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1X01240780.D110/04/17 01:43EMn/an/aVX3375

Run #2

Purge Volume
Run #1 5.0 ml
Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide ^a	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	102%		72-122%
17060-07-0	1,2-Dichloroethane-D4	112%		68-124%
2037-26-5	Toluene-D8	99%		80-119%
460-00-4	4-Bromofluorobenzene	103%		72-126%

(a) AZ:V1

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: GW-092517-PG-50

 Lab Sample ID:
 TD9826-2
 Date Sampled:
 09/27/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/28/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 X01240781.D 1 10/04/17 02:10 EM n/a N/a VX3375

Run #2

Purge Volume
Run #1 5.0 ml
Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide ^a	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	104%		72-122%
17060-07-0	1,2-Dichloroethane-D4	111%		68-124%
2037-26-5	Toluene-D8	98%		80-119%
460-00-4	4-Bromofluorobenzene	101%		72-126%

(a) AZ:V1

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: GW-092517-PG-51

 Lab Sample ID:
 TD9826-3
 Date Sampled:
 09/27/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/28/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1X01240782.D110/04/17 02:36EMn/an/aVX3375

Run #2

Purge Volume
Run #1 5.0 ml
Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	2.4	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide ^a	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	2.7	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m, p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	105%		72-122%
17060-07-0	1,2-Dichloroethane-D4	114%		68-124%
2037-26-5	Toluene-D8	100%		80-119%
460-00-4	4-Bromofluorobenzene	101%		72-126%

(a) AZ:V1

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

9 of 28
ACCUTEST
TD9826

Report of Analysis

Client Sample ID: GW-092617-PG-52

Lab Sample ID: TD9826-4 **Date Sampled:** 09/26/17 Matrix: AQ - Ground Water **Date Received:** 09/28/17 Method: SW846 8260C **Percent Solids:** n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF **Prep Batch Analytical Batch** Analyzed By **Prep Date** Run #1 X01240783.D 1 10/04/17 03:03 EM n/aVX3375 n/a

Run #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide ^a	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	3.3	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	105%		72-122%
17060-07-0	1,2-Dichloroethane-D4	115%		68-124%
2037-26-5	Toluene-D8	98%		80-119%
460-00-4	4-Bromofluorobenzene	99%		72-126%

(a) AZ:V1

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

ACCUTEST

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

Client Sample ID: GW-092617-PG-53

 Lab Sample ID:
 TD9826-5
 Date Sampled:
 09/26/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/28/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 X01240784.D 1 10/04/17 03:30 EM n/a N/a VX3375

Run #2

Purge Volume
Run #1 5.0 ml
Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide ^a	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	105%		72-122%
17060-07-0	1,2-Dichloroethane-D4	114%		68-124%
2037-26-5	Toluene-D8	100%		80-119%
460-00-4	4-Bromofluorobenzene	102%		72-126%

(a) AZ:V1

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

SGS 11 of 28
ACCUTEST

Report of Analysis

Client Sample ID: GW-092617-PG-54

 Lab Sample ID:
 TD9826-6
 Date Sampled:
 09/26/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/28/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1X01240785.D110/04/17 03:56EMn/an/aVX3375

Run #2

Purge Volume
Run #1 5.0 ml
Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide ^a	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	2.5	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m, p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	104%		72-122%
17060-07-0	1,2-Dichloroethane-D4	116%		68-124%
2037-26-5	Toluene-D8	97%		80-119%
460-00-4	4-Bromofluorobenzene	100%		72-126%

(a) AZ:V1

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID: GW-092617-PG-55

 Lab Sample ID:
 TD9826-7
 Date Sampled:
 09/26/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/28/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 X01240786.D 1 10/04/17 04:23 EM n/a n/a VX3375

Run #2

Purge Volume
Run #1 5.0 ml
Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	1.1	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide ^a	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	2.6	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	106%		72-122%
17060-07-0	1,2-Dichloroethane-D4	114%		68-124%
2037-26-5	Toluene-D8	99%		80-119%
460-00-4	4-Bromofluorobenzene	100%		72-126%

(a) AZ:V1

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

SGS 13 of 28
ACCUTEST

Client Sample ID: GW-092717-PG-56

Lab Sample ID: TD9826-8 **Date Sampled:** 09/27/17 Matrix: AQ - Ground Water **Date Received:** 09/28/17 Method: SW846 8260C **Percent Solids:** n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF **Prep Batch Analytical Batch** Analyzed By **Prep Date** Run #1 X01240787.D 1 10/04/17 04:49 EM n/aVX3375 n/a

Run #2

Purge Volume Run #1 5.0 mlRun #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	5.2	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	3.0	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide ^a	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	13.2	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	104%		72-122%
17060-07-0	1,2-Dichloroethane-D4	114%		68-124%
2037-26-5	Toluene-D8	100%		80-119%
460-00-4	4-Bromofluorobenzene	102%		72-126%

(a) AZ:V1

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

ACCUTEST

ND = Not detected

RL = Reporting Limit

Client Sample ID: GW-092717-PG-57

 Lab Sample ID:
 TD9826-9
 Date Sampled:
 09/27/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/28/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

 File ID
 DF
 Analyzed
 By
 Prep Date
 Prep Batch
 Analytical Batch

 Run #1
 X01240788.D
 1
 10/04/17 05:16
 EM
 n/a
 n/a
 VX3375

 Run #2
 VX3375
 VX3375
 VX3375
 VX3375

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	5.0	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide ^a	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	13.3	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	107%		72-122%
17060-07-0	1,2-Dichloroethane-D4	118%		68-124%
2037-26-5	Toluene-D8	96%		80-119%
460-00-4	4-Bromofluorobenzene	104%		72-126%

(a) AZ:V1

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

SGS A

15 of 28
ACCUTEST

Page 1 of 1

Client Sample ID: GW-092717-PG-58

 Lab Sample ID:
 TD9826-10
 Date Sampled:
 09/27/17

 Matrix:
 AQ - Ground Water
 Date Received:
 09/28/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1X01240789.D110/04/17 05:42EMn/an/aVX3375

Run #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	1.1	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide ^a	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	36.7	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	105%		72-122%
17060-07-0	1,2-Dichloroethane-D4	116%		68-124%
2037-26-5	Toluene-D8	96%		80-119%
460-00-4	4-Bromofluorobenzene	105%		72-126%

(a) AZ:V1

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: GW-092717-PG-59

Lab Sample ID: TD9826-11 **Date Sampled:** 09/27/17 Matrix: AQ - Ground Water **Date Received:** 09/28/17 Method: SW846 8260C **Percent Solids:** n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF **Prep Batch Analytical Batch** Analyzed By **Prep Date** Run #1 X01240790.D 1 10/04/17 06:09 EM n/aVX3375 n/a

Run #2

Purge Volume Run #1 5.0 mlRun #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	1.0	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide ^a	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	34.8	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	104%		72-122%
17060-07-0	1,2-Dichloroethane-D4	115%		68-124%
2037-26-5	Toluene-D8	97%		80-119%
460-00-4	4-Bromofluorobenzene	100%		72-126%

(a) AZ:V1

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

ACCUTEST

ND = Not detected

RL = Reporting Limit

Client Sample ID: TRIP BLANK

 Lab Sample ID:
 TD9826-12
 Date Sampled:
 09/27/17

 Matrix:
 AQ - Trip Blank Water
 Date Received:
 09/28/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 X01240791.D 1 10/04/17 06:35 EM n/a VX3375

Run #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide ^a	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	104%		72-122%
17060-07-0	1,2-Dichloroethane-D4	116%		68-124%
2037-26-5	Toluene-D8	97%		80-119%
460-00-4	4-Bromofluorobenzene	106%		72-126%

(a) AZ:V1

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- · Arizona Qualifiers
- Chain of Custody

Arizona Qualifiers

Page 1 of 1

Job Number: TD9826

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

The following Arizona qualifiers have been applied to data and/or QC in this report.

Qual	Description
Q9	Insufficient sample received to meet method QC requirements.

V1 CCV recovery was above method acceptance limits. This target analyte was not detected in the sample.

P	H	O	E	N	IX
A a	200	g sagar	-	egga	

CHAIN OF CUSTODY

PAGE	l	OF	ſ

ACC!	U E 3 10165 Hai	win Dr, Ste 150 Houston, TX 77036	7703 6520 0338	Bottle Order Control #	
1	TEL. 71	-271-4700 FAX: 713-271-4770 www.accutest.com	SGS Accutest Quote #	SGS Accutest Job # T 0 27 (
Client / Reporting Information	Project	Information	B	101000	
Company Name	Project Name:		Requested	Analyses Matrix Codes	
GHD	042				
Street Address	Street			DW - Drinking Water	
City State Zin		Billing Information (if different from Report to)		GW - Ground Water WW - Water	
The state of the s	City State	Company Name	1	SW - Surface Water	
MANFEED PLASCHIKE Project Contact E-mail	Project#			SO - Soil SL- Sludge	
	T Tojact II	Street Address		SED-Sediment OI - Oil	
Phone # Fax #	Client Purchase Order #	City State Zin		LIQ - Other Liquid	
		City State Zip		AIR - Air SOL - Other Solid	
Sampler(s) Name(s) Phone #	Project Manager	Attention:	0	WP - Wipe FB-Field Blank	
PATRICK GREENE			202		
sas	Collection	Number of preserved Bottles	8		
Acculost Sample # Field ID / Point of Collection		23 440H 440H 54 SO4 SO4 ER			
Tield ib 71 dirt of Collection	Date Time Sampled By	HC		LAB USE ONLY	
- GH- 092517-PG-149	1/25/17 0840 PG	6W 3 1	X S	(3)·	
2 50	1 1015 1			(a)	
3	1330				
4 6WI -092617-PG 52	9/26/17 0830				
5 1 1 53	1 0945		X	(Section)	
			\times	CC!	
4 54	1045		χ		
17 + 55	1 1330		λ		
3 Gul-092717-PG-56	9/27/11 0830				
9 1 57	1 1/30		\times		
10 56	1420		\times		
11 1 - 59					
	1 1425		\times		
(Z TRIP BLANK	Augusta Marian Company	' Z '	X		
Turnaround Time (Business days)		Data Deliverable Information	Comm	ments / Spicial Instructions	
Standard 5 Day <i>RUSH</i>	Approved By (SGS Accutest PM): / Date:	Commercial "A" (Level 1) TRRP			
4 Day RUSH	**************************************	Commercial "B" (Level 2) EDD Format FULT1 (Level 3+4) Other	200		
3 Day RUSH	Min	FULT1 (Level 3+4) Other			
2 Day RUSH	POPONOMINATE PARTIES AND ADMINISTRATION OF THE PARTIES AND ADMINISTRATION	Commercial "C"			
1 Day EMERGENCY	Manager and the second	Commercial "A" = Results Only			
Emergency & Rush T/A data available VIA Lablink	Form: SM021-0	Commercial "B" = Results + QC Summary			
11/1/1	/ Sample Custody must be docume	Commercial "C" = Results + QC & Surrogate nted below each time samples change possession, include the commercial "C" = Results + QC & Surrogate the commercial "C"	Summary		
Relinquished by Sampig Date Time	27/17 1500 Received By. 1 15000	Date Time: 1500 Relinquished By: 2 Well forw	m 927 1 7 1630 5	Received By: 2 Fed Ex 7/2717 1630	
Relinquished by Sampler: Date Time:	Received By: 3	Date Time: Relinquished By:		2 fed by 7/2) 7 1030 Received By: Date Time:	
Refinquished by: Date Time: 5	Received By: 5		tact Preserved where applicable	On Ico Cooler Temps	

TD9826: Chain of Custody

Page 1 of 5

Form: SM027-06 Rev 10/24/2016

2					is a second		
2286Q1#D1		2				ACCUTEST	The second secon
COOLER TEMP FORM	Delivered by (circle one); (FedEX/UPS ALGC Driver Client Date: Q \(\triangle 2 \triangle 1 \triangle 1 \triangle 2 \triangle 2 \triangle 1 \triangle 2 \triangle 2 \triangle 1 \triangle 2 \triangle	lumber:	SAMPLES CONTAINED IN COOLER	THAM	AB SGRA True IAH	ACCI	

TD9826: Chain of Custody Page 2 of 5

Page 1 of 3

SGS Accutest Sample Receipt Summary

Job Number: TD982	26		Client: G	HD			Project: OU2				
Date / Time Received:			De	elivery Meth	nod:		Airbill #'s: 770365200338				
No. Coolers:1	Ther	m ID: IF	R-5;				Temp Adjustment Factor: 0;				
Cooler Temps (Initial/Adjusted	Cooler Temps (Initial/Adjusted): #1: (3.3/3.3);										
Cooler Security Y	or N	<u>L</u>		<u>د</u>	Y or	N	Sample Integrity - Documentation	<u>Y</u>	or N		
1. Custody Seals Present:] 3.	COC Prese	ent:			Sample labels present on bottles:	✓			
2. Custody Seals Intact:] 4. Sr	npl Dates/T	ime OK			Container labeling complete:	✓			
Cooler Temperature	<u>Y</u>	or N					3. Sample container label / COC agree:	✓			
Temp criteria achieved:	✓						Sample Integrity - Condition	<u>Y</u>	or N		
Cooler temp verification:							Sample recvd within HT:	✓			
Cooler media:	lo	ce (Bag)					All containers accounted for:	✓			
Quality Control Preservation	<u>Y</u>	or N	N/A	<u>w</u> T	гв ѕ	STB_	3. Condition of sample:		Intact		
1. Trip Blank present / cooler:	✓			✓]		Sample Integrity - Instructions	Υ	or N	N/A	
2. Trip Blank listed on COC:	✓						Analysis requested is clear:	<u> </u>			
3. Samples preserved properly:	✓						Bottles received for unspecified tests		✓		
4. VOCs headspace free:	✓						3. Sufficient volume recvd for analysis:	\checkmark			
							4. Compositing instructions clear:			\checkmark	
							5. Filtering instructions clear:			✓	
Comments											

TD9826: Chain of Custody

Page 3 of 5

Sample Receipt Log

 Job #:
 TD9826
 Date / Time Received:
 9/28/2017 9:55:00 AM
 Initials:
 DS

Client: GHD

Cooler#	Sample ID:	Vol	Bot #	Location	Pres	рН	Therm ID	Initial Temp	Therm CF	Corrected Temp
1	TD9826-1	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-1	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-1	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-2	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-2	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-2	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-3	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-3	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-3	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-4	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-4	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-4	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-5	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-5	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-5	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-6	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-6	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-6	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-7	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-7	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-7	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-8	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-8	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3

TD9826: Chain of Custody

Page 4 of 5

Sample Receipt Log

 Job #:
 TD9826
 Date / Time Received:
 9/28/2017 9:55:00 AM
 Initials:
 DS

Client: GHD

Cooler#	Sample ID:	Vol	Bot #	Location	Pres	рН	Therm ID	Initial Temp	Therm CF	Corrected Temp
1	TD9826-8	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-9	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-9	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-9	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-10	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-10	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-10	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-11	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-11	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-11	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-12	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3
1	TD9826-12	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	3.3	0	3.3

TD9826: Chain of Custody

Page 5 of 5

Section 5

MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: SW846 8260C

.1.1

Method Blank Summary

Job Number: TD9826

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VX3375-MB	X01240779.D	1	10/04/17	EM	n/a	n/a	VX3375

The QC reported here applies to the following samples:

 $TD9826-1,\ TD9826-2,\ TD9826-3,\ TD9826-4,\ TD9826-5,\ TD9826-6,\ TD9826-7,\ TD9826-8,\ TD9826-9,\ TD9826-10,\ TD9826-11,\ TD9826-12$

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	0.50	ug/l
75-27-4	Bromodichloromethane	ND	0.50	ug/l
67-66-3	Chloroform	ND	0.50	ug/l
75-34-3	1,1-Dichloroethane	ND	0.50	ug/l
75-35-4	1,1-Dichloroethylene	ND	0.50	ug/l
107-06-2	1,2-Dichloroethane	ND	0.50	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	0.50	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	0.50	ug/l
74-83-9	Methyl bromide	ND	0.50	ug/l
74-87-3	Methyl chloride	ND	0.50	ug/l
71-55-6	1,1,1-Trichloroethane	ND	0.50	ug/l
127-18-4	Tetrachloroethylene	ND	0.50	ug/l
108-88-3	Toluene	ND	0.50	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.5	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	104%	72-122%
17060-07-0	1,2-Dichloroethane-D4	113%	68-124%
2037-26-5	Toluene-D8	97%	80-119%
460-00-4	4-Bromofluorobenzene	104%	72-126%

Page 1 of 1

Method: SW846 8260C

Blank Spike/Blank Spike Duplicate Summary

Job Number: TD9826

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
VX3375-BS	X01240775.D	1	10/03/17	EM	n/a	n/a	VX3375
VX3375-BSD a	X01240776.D	1	10/03/17	EM	n/a	n/a	VX3375

The QC reported here applies to the following samples:

 $TD9826-1,\ TD9826-2,\ TD9826-3,\ TD9826-4,\ TD9826-5,\ TD9826-6,\ TD9826-7,\ TD9826-8,\ TD9826-9,\ TD9826-10,\ TD9826-11,\ TD9826-12$

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	25	24.2	97	24.0	96	1	68-119/30
75-27-4	Bromodichloromethane	25	23.0	92	22.4	90	3	72-118/30
67-66-3	Chloroform	25	24.7	99	22.6	90	9	73-122/30
75-34-3	1,1-Dichloroethane	25	23.9	96	23.2	93	3	72-121/30
75-35-4	1,1-Dichloroethylene	25	27.8	111	25.0	100	11	67-140/30
107-06-2	1,2-Dichloroethane	25	27.2	109	26.1	104	4	68-121/30
156-59-2	cis-1,2-Dichloroethylene	25	26.6	106	25.6	102	4	72-117/30
156-60-5	trans-1,2-Dichloroethylene	25	23.6	94	22.8	91	3	68-124/30
74-83-9	Methyl bromide	25	33.0	132	33.4	134	1	53-138/30
74-87-3	Methyl chloride	25	24.0	96	23.0	92	4	50-145/30
71-55-6	1,1,1-Trichloroethane	25	23.5	94	22.5	90	4	72-129/30
127-18-4	Tetrachloroethylene	25	22.5	90	22.0	88	2	72-132/30
108-88-3	Toluene	25	23.2	93	22.6	90	3	73-119/30
79-01-6	Trichloroethylene	25	24.6	98	24.0	96	2	73-121/30
75-69-4	Trichlorofluoromethane	25	28.4	114	28.4	114	0	46-152/30
75-01-4	Vinyl chloride	25	23.9	96	23.3	93	3	54-126/30
1330-20-7	Xylene (total)	75	68.4	91	66.3	88	3	74-119/30
	m,p-Xylene	50	46.9	94	45.4	91	3	74-119/30
95-47-6	o-Xylene	25	21.6	86	21.0	84	3	73-121/30

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
	Dibromofluoromethane	106%	106%	72-122%
17060-07-	0 1,2-Dichloroethane-D4	109%	107%	68-124%
2037-26-5	Toluene-D8	97%	97%	80-119%
460-00-4	4-Bromofluorobenzene	103%	105%	72-126%

(a) AZ:Q9

^{* =} Outside of Control Limits.

ACCUTEST Gulf Coast

10/10/17

SGS ACCUTEST IS PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.

e-Hardcopy 2.0
Automated Report

Technical Report for

GHD Services Inc.

52nd Street Superfund Site - OU2 Area, Phoenix, AZ

013932-130

SGS Accutest Job Number: TD10118

Sampling Dates: 09/28/17 - 10/03/17

GHD Services Inc.

4747 N. 22nd Street Second Floor

Phoenix, AZ 85016

manfred.plaschke@ghd.com; mary.cameron@ghd.com;

sheri.finn@ghd.com; brooks.dillard@ghd.com

ATTN: Manfred Plaschke

Total number of pages in report: 19

Review standard terms at: http://www.sgs.com/en/terms-and-conditions

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Anita Patel 713-271-4700

Certifications: TX (T104704220-17-27) AR (14-016-0) AZ (AZ0769) FL (E87628) KS (E-10366) LA (85695/04004) NJ (TX010) OK (2017-002) VA (8999)

This report shall not be reproduced, except in its entirety, without the written approval of SGS Accutest. Test results relate only to samples analyzed.

Laboratory Director

Sections:

Table of Contents

-1-

Section 1: Sample Summary 3	3
Section 2: Summary of Hits	
Section 3: Sample Results	
3.1: TD10118-1: GW-092817-PG-60	
3.2: TD10118-2: GW-092817-PG-61	7
3.3: TD10118-3: GW-100317-PG-62	8
3.4: TD10118-4: TRIP BLANK	9
Section 4: Misc. Forms	10
4.1: Arizona Qualifiers	11
4.2: Chain of Custody	12
Section 5: MS Volatiles - QC Data Summaries	16
5.1: Method Blank Summary	17
5.2: Blank Spike Summary	18
5.3: Matrix Spike/Matrix Spike Duplicate Summary	

Sample Summary

GHD Services Inc.

Job No: TD10118

52nd Street Superfund Site - OU2 Area, Phoenix, AZ Project No: 013932-130

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
TD10118-1	09/28/17	10:10	10/04/17	AQ	Ground Water	GW-092817-PG-60
TD10118-1D	09/28/17	10:10	10/04/17	AQ	Water Dup/MSD	GW-092817-PG-60 MSD
TD10118-1S	09/28/17	10:10	10/04/17	AQ	Water Matrix Spike	GW-092817-PG-60 MS
TD10118-2	09/28/17	14:00	10/04/17	AQ	Ground Water	GW-092817-PG-61
TD10118-3	10/03/17	13:45	10/04/17	AQ	Ground Water	GW-100317-PG-62
TD10118-4	10/03/17	00:00	10/04/17	AQ	Trip Blank Water	TRIP BLANK

Summary of Hits Job Number: TD10118

Account: GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Collected: 09/28/17 thru 10/03/17

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
TD10118-1 GW-092817-PG-6	0				
Chloroform	1.2	1.0		ug/l	SW846 8260C
1,1-Dichloroethane 1,1-Dichloroethylene	12.2 29.3	1.0 1.0		ug/l ug/l	SW846 8260C SW846 8260C
cis-1,2-Dichloroethylene	18.1	1.0		ug/l	SW846 8260C
Trichloroethylene	97.9	0.50		ug/l	SW846 8260C
TD10118-2 GW-092817-PG-6	1				
Chloroform	3.5	1.0		ug/l	SW846 8260C
1,1-Dichloroethylene	4.5	1.0		ug/l	SW846 8260C
cis-1,2-Dichloroethylene	19.4	1.0		ug/l	SW846 8260C
Tetrachloroethylene	1.5	1.0		ug/l	SW846 8260C
Trichloroethylene	46.3	0.50		ug/l	SW846 8260C

TD10118-3 GW-100317-PG-62

No hits reported in this sample.

TD10118-4 TRIP BLANK

No hits reported in this sample.

Section 3 &

Report of Analysis

Client Sample ID: GW-092817-PG-60

Lab Sample ID: TD10118-1 **Date Sampled:** 09/28/17 Matrix: AQ - Ground Water **Date Received:** 10/04/17 Method: SW846 8260C **Percent Solids:** n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF **Prep Batch Analytical Batch** Analyzed By **Prep Date** Run #1 X01240860.D 1 10/05/17 14:09 EM n/aVX3379 n/a

Run #2

Purge Volume Run #1 5.0 mlRun #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	1.2	1.0	ug/l
75-34-3	1,1-Dichloroethane	12.2	1.0	ug/l
75-35-4	1,1-Dichloroethylene	29.3	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	18.1	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide ^a	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	97.9	0.50	ug/l
75-69-4	Trichlorofluoromethane a	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	100%		72-122%
17060-07-0	1,2-Dichloroethane-D4	109%		68-124%
2037-26-5	Toluene-D8	98%		80-119%
460-00-4	4-Bromofluorobenzene	102%		72-126%

(a) AZ:V1

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

ACCUTEST

ND = Not detected

RL = Reporting Limit

Page 1 of 1

Report of Analysis

Client Sample ID: GW-092817-PG-61

Lab Sample ID: TD10118-2 **Date Sampled:** 09/28/17 Matrix: AQ - Ground Water **Date Received:** 10/04/17 Method: SW846 8260C **Percent Solids:** n/a

52nd Street Superfund Site - OU2 Area, Phoenix, AZ **Project:**

File ID DF **Prep Batch Analytical Batch** Analyzed By **Prep Date** Run #1 X01240864.D 1 10/05/17 15:54 EM n/aVX3379 n/a

Run #2

Purge Volume Run #1 5.0 mlRun #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	3.5	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	4.5	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	19.4	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide ^a	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	1.5	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	46.3	0.50	ug/l
75-69-4	Trichlorofluoromethane a	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	101%		72-122%
17060-07-0	1,2-Dichloroethane-D4	112%		68-124%
2037-26-5	Toluene-D8	101%		80-119%
460-00-4	4-Bromofluorobenzene	101%		72-126%

(a) AZ:V1

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

ACCUTEST

Report of Analysis

Client Sample ID: GW-100317-PG-62

 Lab Sample ID:
 TD10118-3
 Date Sampled:
 10/03/17

 Matrix:
 AQ - Ground Water
 Date Received:
 10/04/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a X01240865.D 1 10/05/17 16:21 EM n/a n/a VX3379

Run #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide ^b	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane b	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	98%		72-122%
17060-07-0	1,2-Dichloroethane-D4	109%		68-124%
2037-26-5	Toluene-D8	102%		80-119%
460-00-4	4-Bromofluorobenzene	102%		72-126%

(a) AZ:Q2 (b) AZ:V1

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

Client Sample ID: TRIP BLANK

Lab Sample ID: TD10118-4 **Date Sampled:** 10/03/17 Matrix: AQ - Trip Blank Water **Date Received:** 10/04/17 Method: SW846 8260C **Percent Solids:** n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF **Prep Batch Analytical Batch** Analyzed By **Prep Date** Run #1 X01240866.D 1 10/05/17 16:47 EM n/aVX3379 n/a

Run #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide ^a	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane a	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	101%		72-122%
17060-07-0	1,2-Dichloroethane-D4	114%		68-124%
2037-26-5	Toluene-D8	101%		80-119%
460-00-4	4-Bromofluorobenzene	102%		72-126%

(a) AZ:V1

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- · Arizona Qualifiers
- Chain of Custody

Arizona Qualifiers Job Number: TD10118 Page 1 of 1

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

The following Arizona qualifiers have been applied to data and/or QC in this report.

1110 101	15 mg - man quantities may be consupplied to sum and of \$6 m and report
Qual	Description
Q2	Sample received with head space.
V1	CCV recovery was above method acceptance limits. This target analyte was not detected in the sample.

- Turni	ACCI	OEN ITEST		10165 Har TEL, 713	-271-470		: 713								Accutest		94	439	18		Order Contro	_	TT:	+	0118
	Client / Reporting Information			Project	Informa	ation									, I		Red	ues	ted	Ana	lyse	s			Matrix Codes
Compar	ny Name	Project Name:																							
treet A	GHD ddress	Street	042		E 9200000	Series Albert			0.000000			0000000													DW - Drinking Wa
					Billing	Informati	ion (i	if differe	ent from	m Rep	ort to)														GW - Ground Wa WW - Water
City	State Zip	City		State		ny Name								7											SW - Surface Wat SO - Soil
roject (Contact E-mail	Project#			Street A	ddress								4											SL- Sludge SED-Sediment
613932 - 130																								OJ - Oil LIQ - Other Liqu	
hone #	Fax#	Client Purchase C	Order#		City				St	ate		Zij	р				1.		1						AIR - Air SOL - Other Soli
ampler	(s) Name(s) Phone #	Project Manager			Attention	n:								۱,											WP - Wipe FB-Field Blank
PA	TRICK GREENE	MANFRE		ASHKE										1000											1
8GS			Colle	ration	Γ	T	+	T E	Number	of pres	erved Bo	atties	Twl.	Ò	ò										Andrews were the second
coutest ample #	Field ID / Point of Collection	Date	Time	Sampled By	Matrix	# of bottles	į.	VaOH ZA/NaC	4NO3	NONE	WEOH	TSP VaHSC	NCO	a la											LAB USE ONL
1	GW- 092817 - PG - GO	9/28/17	1010	16	OW	6	×.		H	Ħ		Ŧ	Ħ	X	+									\exists	MSMSI
2	I I I 401	L.,	1400	ΗŤ	60	3	X			$\dagger\dagger$	\Box	\top	$\dagger \dagger$	X	+			1							7.10/110/
3	6W-100317-P6-62	10/3/17	1345		6w	3	7			$\dagger\dagger$	$\dagger\dagger$	+	$\dagger \dagger$	Х	-	\dagger								\exists	
ú	TRIP BLANK				wa	Z	ĺχ			$\dagger\dagger$	+	+	$\dagger \dagger$	Ť	+		†	-						\exists	
	1811 25-111/1-2				700		Ť		H	$\dagger\dagger$	++	+	††					†			+	_	-1/1	\exists	
							\dagger				$\dagger\dagger$		11	ř	100	A J	J-10 2010	100	187.		H		10	\exists	
				1			+			$\dagger\dagger$	$\dagger\dagger$	+	$\dagger \dagger$	+	+		9.5	۲,	نقا	-	\vdash		$\forall +$	\mathcal{T}	-
				+						$\dagger\dagger$	$\dagger\dagger$	+	$\dagger \dagger$	+		+	1				1		$ \nearrow $	\dashv	
							t		H	$\dagger\dagger$		+	$\dagger \dagger$	+				 		20/70	K	7	1	\exists	
	the state of the s						+		H	$\dagger\dagger$	++	+	$\dagger \dagger$	+	+	1		D	133	·	$\perp A$	_	\preceq		usages on
							+		H	$\dagger\dagger$	+		\forall	+	+	1					ΗŤ				
							+	H		$\dagger\dagger$	+	+	$\dagger \dagger$	+	+						+		\vdash	\dashv	
	Turnaround Time (Business days)				-0.00			Data D	Deliver	able Ir	nforma	tion	1.1.						Con	ments	/ Special	l Instru	ctions		
	₹ Standard	Approved By (SGS /	Accutest PM): / Date	e.		Comme					- Inneced	TRRE													
	5 Day RUSH 4 Day RUSH					Commer			vel 2)		0.0000000000000000000000000000000000000	Othe	Form	at											
	3 Day RUSH					REDT1	(Lev	el 3+4)			_														
	2 Day RUSH 1 Day EMERGENCY				ΙШ	Comme		'C" Comme	ercial "a	4* ≃ R:	esults C	nlv													
	Emergency & Rush T/A data available VIA Lablink							Comme	ercial "E	3" = R	sults +	QC S											144		
	. //	San	nple Custody n	Form: SM021-		elow ea		Comme me san								. l er deliv	rerv.								

TD10118: Chain of Custody Page 1 of 4

TD10118: Chain of Custody Page 2 of 4

SGS Accutest Sample Receipt Summary

Job Number: TD101	18		Client: GHD			Project: 042			
Date / Time Received:			Delivery I	Method	:	Airbill #'s: 770410944398			
No. Coolers: 1	Therm	ı ID: IF	R-5;			Temp Adjustment Factor: 0);		
Cooler Temps (Initial/Adjusted): <u>#1</u> :	(1.4/1.4	4);						
Cooler Security Y	or N			<u>Y</u> c	or N	Sample Integrity - Documentation	<u>Y</u>	or N	
1. Custody Seals Present:			COC Present:	\checkmark		Sample labels present on bottles:	✓		
2. Custody Seals Intact:		4. Sn	mpl Dates/Time OK	\checkmark		Container labeling complete:	✓		
Cooler Temperature	Υ (or N				3. Sample container label / COC agree:	✓		
1. Temp criteria achieved:	✓					Sample Integrity - Condition	<u>Y</u>	or N	
Cooler temp verification:						Sample recvd within HT:	✓		
3. Cooler media:	Ice	e (Bag)				2. All containers accounted for:	✓		
Quality Control_Preservation	<u>Y</u>	or N	N/A	WTB	STB	3. Condition of sample:		Intact	
1. Trip Blank present / cooler:	✓			✓		Sample Integrity - Instructions	<u>Y</u>	or N	N/A
2. Trip Blank listed on COC:	✓					Analysis requested is clear:	✓		
3. Samples preserved properly:	✓					2. Bottles received for unspecified tests		✓	
4. VOCs headspace free:	✓					3. Sufficient volume recvd for analysis:	✓		
						4. Compositing instructions clear:			\checkmark
						5. Filtering instructions clear:			✓
Comments									

TD10118: Chain of Custody Page 3 of 4

_

Sample Receipt Log

 Job #:
 TD10118
 Date / Time Received:
 10/4/2017 10:20:00 AM
 Initials:
 BG

Client: GHD

Cooler #	Sample ID:	Vol	Bot#	Location	Pres	рН	Therm ID	Initial Temp	Therm CF	Corrected Temp
1	TD10118-1	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	1.4	0	1.4
1	TD10118-1	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	1.4	0	1.4
1	TD10118-1	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	1.4	0	1.4
1	TD10118-1	40ml	4	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	1.4	0	1.4
1	TD10118-1	40ml	5	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	1.4	0	1.4
1	TD10118-1	40ml	6	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	1.4	0	1.4
1	TD10118-2	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	1.4	0	1.4
1	TD10118-2	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	1.4	0	1.4
1	TD10118-2	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	1.4	0	1.4
1	TD10118-3	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	1.4	0	1.4
1	TD10118-3	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	1.4	0	1.4
1	TD10118-3	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	1.4	0	1.4
1	TD10118-4	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	1.4	0	1.4
1	TD10118-4	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	1.4	0	1.4

TD10118: Chain of Custody Page 4 of 4

Section 5

MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: SW846 8260C

Method Blank Summary

Job Number: TD10118

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VX3379-MB	X01240859.D	1	10/05/17	EM	n/a	n/a	VX3379

The QC reported here applies to the following samples:

TD10118-1, TD10118-2, TD10118-3, TD10118-4

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	0.50	ug/l
75-27-4	Bromodichloromethane	ND	0.50	ug/l
67-66-3	Chloroform	ND	0.50	ug/l
75-34-3	1,1-Dichloroethane	ND	0.50	ug/l
75-35-4	1,1-Dichloroethylene	ND	0.50	ug/l
107-06-2	1,2-Dichloroethane	ND	0.50	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	0.50	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	0.50	ug/l
74-83-9	Methyl bromide	ND	0.50	ug/l
74-87-3	Methyl chloride	ND	0.50	ug/l
71-55-6	1,1,1-Trichloroethane	ND	0.50	ug/l
127-18-4	Tetrachloroethylene	ND	0.50	ug/l
108-88-3	Toluene	ND	0.50	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.5	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l

CAS No. Surrogate Recoveries Limits

1868-53-7	Dibromofluoromethane	99%	72-122%
17060-07-0	1,2-Dichloroethane-D4	109%	68-124%
2037-26-5	Toluene-D8	98%	80-119%
460-00-4	4-Bromofluorobenzene	102%	72-126%

Page 1 of 1

Method: SW846 8260C

Blank Spike Summary Job Number: TD10118

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VX3379-BS	X01240857.D	1	10/05/17	EM	n/a	n/a	VX3379

The QC reported here applies to the following samples:

TD10118-1, TD10118-2, TD10118-3, TD10118-4

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2	Benzene	25	23.0	92	68-119
75-27-4	Bromodichloromethane	25	21.1	84	72-118
67-66-3	Chloroform	25	20.9	84	73-122
75-34-3	1,1-Dichloroethane	25	21.7	87	72-121
75-35-4	1,1-Dichloroethylene	25	27.7	111	67-140
107-06-2	1,2-Dichloroethane	25	25.0	100	68-121
156-59-2	cis-1,2-Dichloroethylene	25	23.9	96	72-117
156-60-5	trans-1,2-Dichloroethylene	25	28.3	113	68-124
74-83-9	Methyl bromide	25	34.2	137	53-138
74-87-3	Methyl chloride	25	24.1	96	50-145
71-55-6	1,1,1-Trichloroethane	25	21.3	85	72-129
127-18-4	Tetrachloroethylene	25	21.7	87	72-132
108-88-3	Toluene	25	21.8	87	73-119
79-01-6	Trichloroethylene	25	23.2	93	73-121
75-69-4	Trichlorofluoromethane	25	31.7	127	46-152
75-01-4	Vinyl chloride	25	25.7	103	54-126
1330-20-7	Xylene (total)	75	64.4	86	74-119
	m,p-Xylene	50	43.8	88	74-119
95-47-6	o-Xylene	25	20.6	82	73-121

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	101%	72-122%
17060-07-0	1,2-Dichloroethane-D4	106%	68-124%
2037-26-5	Toluene-D8	97%	80-119%
460-00-4	4-Bromofluorobenzene	104%	72-126%

^{* =} Outside of Control Limits.

Page 1 of 1

Method: SW846 8260C

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: TD10118

CRAAZP GHD Services Inc. Account:

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
TD10118-1MS	X01240861.D	1	10/05/17	EM	n/a	n/a	VX3379
TD10118-1MSD	X01240862.D	1	10/05/17	EM	n/a	n/a	VX3379
TD10118-1	X01240860.D	1	10/05/17	EM	n/a	n/a	VX3379

The QC reported here applies to the following samples:

TD10118-1, TD10118-2, TD10118-3, TD10118-4

		TD10118-1	Spike	MS	MS	Spike	MSD	MSD		Limits
CAS No.	Compound	ug/l Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
71-43-2	Benzene	ND	25	22.6	90	25	23.4	94	3	68-119/12
75-27-4	Bromodichloromethane	0.40	25	21.1	83	25	21.8	86	3	72-118/16
67-66-3	Chloroform	1.2	25	22.2	84	25	22.8	86	3	73-122/13
75-34-3	1,1-Dichloroethane	12.2	25	33.8	86	25	35.3	92	4	72-121/14
75-35-4	1,1-Dichloroethylene	29.3	25	53.5	97	25	58.2	116	8	67-140/18
107-06-2	1,2-Dichloroethane	ND	25	25.3	101	25	25.6	102	1	68-121/12
156-59-2	cis-1,2-Dichloroethylene	18.1	25	42.7	98	25	44.3	105	4	72-117/13
156-60-5	trans-1,2-Dichloroethylene	ND	25	21.7	87	25	22.3	89	3	68-124/15
74-83-9	Methyl bromide	ND	25	32.5	130	25	36.2	145*	11	53-138/16
74-87-3	Methyl chloride	ND	25	21.3	85	25	25.6	102	18*	50-145/17
71-55-6	1,1,1-Trichloroethane	ND	25	20.9	84	25	21.6	86	3	72-129/14
127-18-4	Tetrachloroethylene	0.74	25	22.7	88	25	23.8	92	5	72-132/14
108-88-3	Toluene	ND	25	21.7	87	25	22.9	92	5	73-119/13
79-01-6	Trichloroethylene	97.9	25	122	96	25	126	112	3	73-121/13
75-69-4	Trichlorofluoromethane	ND	25	27.8	111	25	30.8	123	10	46-152/25
75-01-4	Vinyl chloride	ND	25	22.2	89	25	26.4	106	17	54-126/17
1330-20-7	Xylene (total)	ND	75	64.2	86	75	66.5	89	4	74-119/13
	m,p-Xylene	ND	50	43.5	87	50	45.1	90	4	74-119/13
95-47-6	o-Xylene	ND	25	20.6	82	25	21.4	86	4	73-121/13
CAS No.	Surrogate Recoveries	MS	MSD	T]	D10118-1	Limits				
1868-53-7	Dibromofluoromethane	104%	104%	10	00%	72-1229	%			
17060-07-0	1,2-Dichloroethane-D4	111%	107%	10	19%	68-1249	%			

CAS No.	Surrogate Recoveries	MS	MSD	TD10118-1	Limits
1060 52 7	Dibuomoflyonomothono	1040/	1040/	1000/	72 1220/
	Dibromofluoromethane	104%	104%	100%	72-122%
17060-07-0	1,2-Dichloroethane-D4	111%	107%	109%	68-124%
2037-26-5	Toluene-D8	99%	100%	98%	80-119%
460-00-4	4-Bromofluorobenzene	100%	102%	102%	72-126%

^{* =} Outside of Control Limits.

ACCUTEST Gulf Coast

10/16/17

SGS ACCUTEST IS PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.

e-Hardcopy 2.0
Automated Report

Technical Report for

GHD Services Inc.

52nd Street Superfund Site - OU2 Area, Phoenix, AZ

013932

SGS Accutest Job Number: TD10414

Sampling Dates: 10/04/17 - 10/05/17

GHD Services Inc.

4747 N. 22nd Street Second Floor

Phoenix, AZ 85016

manfred.plaschke@ghd.com; mary.cameron@ghd.com;

sheri.finn@ghd.com; brooks.dillard@ghd.com

ATTN: Manfred Plaschke

Total number of pages in report: 17

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Anita Patel 713-271-4700

Certifications: TX (T104704220-17-27) AR (14-016-0) AZ (AZ0769) FL (E87628) KS (E-10366) LA (85695/04004) NJ (TX010) OK (2017-002) VA (8999)

This report shall not be reproduced, except in its entirety, without the written approval of SGS Accutest. Test results relate only to samples analyzed.

Laboratory Director

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	4
Section 3: Sample Results	5
3.1: TD10414-1: GW-100417-PG-63	6
3.2: TD10414-2: GW-100517-PG-64	7
3.3: TD10414-3: TRIP BLANK	8
Section 4: Misc. Forms	9
4.1: Chain of Custody	10
Section 5: MS Volatiles - QC Data Summaries	14
5.1: Method Blank Summary	15
5.2: Blank Spike Summary	16
5.3: Matrix Spike/Matrix Spike Duplicate Summary	

Sample Summary

GHD Services Inc.

Job No:

TD10414

52nd Street Superfund Site - OU2 Area, Phoenix, AZ Project No: 013932

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
TD10414-1	10/04/17	09:50	10/10/17	AQ	Ground Water	GW-100417-PG-63
TD10414-2	10/05/17	13:00	10/10/17	AQ	Ground Water	GW-100517-PG-64
TD10414-3	10/05/17	00:00	10/10/17	AQ	Trip Blank Water	TRIP BLANK

Summary of Hits Job Number: TD10414

Account: GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Collected: 10/04/17 thru 10/05/17

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method		
TD10414-1 GW-100417-PG-6	3				-		
Chloroform 1,1-Dichloroethylene cis-1,2-Dichloroethylene Tetrachloroethylene Trichloroethylene	2.3 2.7 12.4 3.6 62.7	1.0 1.0 1.0 1.0 0.50		ug/l ug/l ug/l ug/l ug/l	SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8260C		
TD10414-2 GW-100517-PG-64							
Trichloroethylene	3.8	0.50		ug/l	SW846 8260C		

TD10414-3 TRIP BLANK

No hits reported in this sample.

Section 3 &

Report of Ana	lveic	
Report of Ana.	19818	

Report of Analysis

Client Sample ID: GW-100417-PG-63

 Lab Sample ID:
 TD10414-1
 Date Sampled:
 10/04/17

 Matrix:
 AQ - Ground Water
 Date Received:
 10/10/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1Z59443.D110/13/17 05:21 ZQn/an/aVZ5444

Run #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	2.3	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	2.7	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	12.4	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	3.6	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	62.7	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	98%		72-122%
17060-07-0	1,2-Dichloroethane-D4	103%		68-124%
2037-26-5	Toluene-D8	99%		80-119%
460-00-4	4-Bromofluorobenzene	105%		72-126%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

6 of 17
ACCUTEST
TD10414

Page 1 of 1

Report of Analysis

Client Sample ID: GW-100517-PG-64

 Lab Sample ID:
 TD10414-2
 Date Sampled:
 10/05/17

 Matrix:
 AQ - Ground Water
 Date Received:
 10/10/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 Z59444.D 1 10/13/17 05:45 ZQ n/a n/a VZ5444

Run #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	3.8	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	94%		72-122%
17060-07-0	1,2-Dichloroethane-D4	107%		68-124%
2037-26-5	Toluene-D8	99%		80-119%
460-00-4	4-Bromofluorobenzene	105%		72-126%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: TRIP BLANK

 Lab Sample ID:
 TD10414-3
 Date Sampled:
 10/05/17

 Matrix:
 AQ - Trip Blank Water
 Date Received:
 10/10/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 Z59436.D 1 10/13/17 02:32 ZQ n/a n/a VZ5444
Run #2

Purge Volume
Run #1 5.0 ml
Run #2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	ug/l
74-87-3	Methyl chloride	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	96%		72-122%
17060-07-0	1,2-Dichloroethane-D4	96%		68-124%
2037-26-5	Toluene-D8	100%		80-119%
460-00-4	4-Bromofluorobenzene	100%		72-126%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Section 4

Misc. Forms
Custody Documents and Other Forms
Includes the following where applicable:

• Chain of Custody

	_
7	_
ь	

	IOOO I ES I		10165 Ha	rwin Dr, S 3-271-470	te 150 H	ouston,	TX 77	036					FEQ.	70	12/ 9	548	715	749	Bottle	Order C	ontrol #			
Client / Reporting Information				www.	accutest.	com	71-47	70					SGS	Accutes	t Quote #				SGS	Accutest .	Job#-	010	~U	TU
Company Name	Project Name	:	Project	Informa	ation											Re	aue	sted	l An:	alve		21	27	I T
6HD	04	フ												T	T	T	T	7	T	T	Ť			Matrix Codes
Street Address	Street			1000000000		SOUTH STORY												-						
City State				Dillian	14 100 100 100 100								20											DW - Drinking Wate GW - Ground Wate
City State	Zip City		State	Compan	nformat y Name	on (if c	intere	nt from	Repo	rt to)			-											WW - Water SW - Surface Wate
Project Contact E-mail	Project #	·																						SO - Soil
M. PLASCHKE	6	13932 -	130	Street Ad	Idress								7					1					- 1	SL- Sludge SED-Sediment
Phone # Fax #	Client Purchas	se Order #		City				State					-						1					OI - Oil LIQ - Other Liquid
Sampler(s) Name(s)	none # Project Manag							State	,		Zip												1	AIR - Air SOL - Other Solid
PATRICK GREENE	none # Project Manag			Attention									1						1					WP - Wipe FB-Field Blank
		Collec	tion				Ni	umber of	Dranan				2											
SGS Accuses: Sample # Field ID / Point of Callactic						T-	Į Į	T-T) iii	ved Bot	nes Z	# ~	N								İ		-	
Tield ID / Folfit of Collection		Time	Sampled By	Matrix	# of bottles	NaO HC	ZA/Ng	H2SO	DI Wa	MEOH	VaHS(ENCO	0	1			-							
1 GW-100417-PG-6	3 0950	-> 10/4/1	, PG	6W	3	X	\vdash	11	F	-	+		X	+-	\vdash	\vdash	-	+	┼	┼		\vdash		LAB USE ONLY
2 GW-100517-PG-60 3 TRIP BLANK	4 10/5/17	1300	06	6W	3	x	$\dagger \dagger$	++	+	\vdash	+	+	X	+-	+-	+	+	+		-			_	
3 TRIP BLANK				40	2	X	H	++	+	H	+	+	文	├-	┼	├-	-	-	!					
						7	\vdash	++	+	\vdash	+	+		ــ	ــــ	_	_		LC		/			
						+	+	++	+	4	+	-		<u> </u>	_		<u> </u>				(
						-	-	$+\!+$	+		$\perp \downarrow$	_	- N A	6	GE	5	D.V.							
						+	4	+	\perp	4	Ш	1	2.7	10	3 %	h ' i	Ф 1.				-			
						\dashv	_	$\perp \perp$	Ш		Ш										1		\dashv	
		-				\perp	_														1/1		\dashv	х.
									Ш			П	VF	R	VI	111	[3]				1 A	-	\dashv	
						Ш		П	П	T	П						10.7	1	CO. J. Constant	-	-	-		
									П		\sqcap	П			 		_	\vdash					\dashv	
Turnaround Time (Business days)						TT			П		TT	\top			_			\vdash					\dashv	
Standard Standard	Approved Pu /SCS	Accutest PM): / Date:						verable	Infor	matio	n							Comn	nents /	Special	Instruc	tions (
5 Day RUSH		Accutest PM): / Date:			mmercia mmercia					TF										- poola	mondo	none par		
4 Day RUSH 3 Day RUSH	****	WARRANT			LT1 (Le			2)			DD Fo													
2 Day RUSH					DT1 (Le		1)		-		-													
1 Day EMERGENCY	***************************************			Co	mmercia		marcia	l "A" = F	2 a. a 14 .	. 0.1														
Emergency & Rush T/A data available VIA Labli	ink		-			Com	mercia	l "B" = F	Results	s + QC	Sumi	marv												
100	San	nple Custody must	orm: SM021-0 t be documen	ted belo	w each								Summ	ary										
Relinquished by Employ: Dat	10 10 17 1630	Received By:	101	Da	ie Time:	1633	Reli	quishec	ge po By:	osses	Sion,	inclu	ling co	ourier		Date Tin								
Relinquished Sampler: C Dat	10 9 17 1638 e Time: 7 955	Received By:	num	- 10	14/17	200	2				WC	W	<u>م</u>	101	9/11] [045		Received 2 Fe/	ď e	X	16/9/	Dat	to Time:
Relinquished by:	7017 453	3		Da	te Time:	755	Relin	nquished	ву: (J ·					7	Date Tin	0:	F	Received					te Time:
5 Date	0 Time:	Received By:	$\overline{}$	Dai	te Time:	1 /		tody Sea	1#			0 1	tact		Preserve	d where	applicate	ole [4	4		On Ice	C-	- 1	
		-	_									U N	ot intact								S X	<u> </u>	Y	<u> </u>

TD10414: Chain of Custody Page 1 of 4

Form: SM027-06 Rev 10/24/2016

COOLER TEMP FORM TC# TD 54	UPS ALGC Driver Client		Corrected Temp, °C 2 · Y	SAMPLES CONTAINED IN COOLER 7704 5744								
AUSUTEST	Delivered by (circle one): (EedEx/UPS Date: / > / > / > / C / > /	umber:	Thermometer ID: The CF, °C	AAA					CUTEST	1 1 Date 19/1		

TD10414: Chain of Custody Page 2 of 4

Page 1 of 2

SGS Accutest Sample Receipt Summary

Job Number: TD104	14	CI	lient: GHD			Project: OU2			
Date / Time Received: 10/10/2	2017 9:	:55:00 AM	Delivery	Method	:	Airbill #'s: 770454815744			
No. Coolers: 1	Therm	1 ID : IR-5	5;			Temp Adjustment Factor:	0;		
Cooler Temps (Initial/Adjusted): <u>#1:</u>	(2.4/2.4)	<u>. </u>						
Cooler Security Y	or N	•		<u> Y</u> c	or N	Sample Integrity - Documentation	<u>Y</u>	or N	
1. Custody Seals Present:			OC Present:	✓		Sample labels present on bottles:	✓		
2. Custody Seals Intact:		4. Smp	ol Dates/Time OK	✓		2. Container labeling complete:	✓		
Cooler Temperature	Υc	or N				3. Sample container label / COC agree:	✓		
1. Temp criteria achieved:	\checkmark					Sample Integrity - Condition	<u>Y</u>	or N	
Cooler temp verification:						1. Sample recvd within HT:	✓		
3. Cooler media:	lce	e (Bag)				2. All containers accounted for:	✓		
Quality Control Preservation	<u>Y</u>	or N	N/A	WTB	STB	3. Condition of sample:		Intact	
1. Trip Blank present / cooler:	✓			✓		Sample Integrity - Instructions	<u>Y</u>	or N	N/A
2. Trip Blank listed on COC:	✓					Analysis requested is clear:	✓		
3. Samples preserved properly:	✓					2. Bottles received for unspecified tests		✓	
4. VOCs headspace free:	v					3. Sufficient volume recvd for analysis:	✓		
						4. Compositing instructions clear:			\checkmark
						5. Filtering instructions clear:			✓
Comments						•			

TD10414: Chain of Custody Page 3 of 4

4

Sample Receipt Log

 Job #:
 TD10414
 Date / Time Received:
 10/10/2017 9:55:00 AM 9:55:
 Initials:
 ec

Client: GHD

Cooler#	Sample ID:	Vol	Bot #	Location	Pres	рН	Therm ID	Initial Temp	Therm CF	Corrected Temp
1	TD10414-1	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.4	0	2.4
1	TD10414-1	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.4	0	2.4
1	TD10414-1	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.4	0	2.4
1	TD10414-2	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.4	0	2.4
1	TD10414-2	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.4	0	2.4
1	TD10414-2	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.4	0	2.4
1	TD10414-3	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.4	0	2.4
1	TD10414-3	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.4	0	2.4

TD10414: Chain of Custody

Page 4 of 4

Section 5

MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: SW846 8260C

Method Blank Summary Job Number: TD10414

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VZ5444-MB	Z59429.D	1	10/12/17	ZQ	n/a	n/a	VZ5444

The QC reported here applies to the following samples:

TD10414-1, TD10414-2, TD10414-3

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	0.50	ug/l
75-27-4	Bromodichloromethane	ND	0.50	ug/l
67-66-3	Chloroform	ND	0.50	ug/l
75-34-3	1,1-Dichloroethane	ND	0.50	ug/l
75-35-4	1,1-Dichloroethylene	ND	0.50	ug/l
107-06-2	1,2-Dichloroethane	ND	0.50	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	0.50	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	0.50	ug/l
74-83-9	Methyl bromide	ND	0.50	ug/l
74-87-3	Methyl chloride	ND	0.50	ug/l
71-55-6	1,1,1-Trichloroethane	ND	0.50	ug/l
127-18-4	Tetrachloroethylene	ND	0.50	ug/l
108-88-3	Toluene	ND	0.50	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.5	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l

CAS No. **Surrogate Recoveries** Limits

1868-53-7	Dibromofluoromethane	95%	72-122%
17060-07-0	1,2-Dichloroethane-D4	92%	68-124%
2037-26-5	Toluene-D8	99%	80-119%
460-00-4	4-Bromofluorobenzene	101%	72-126%

Page 1 of 1

Method: SW846 8260C

Blank Spike Summary Job Number: TD10414

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VZ5444-BS	Z59426.D	1	10/12/17	ZQ	n/a	n/a	VZ5444

The QC reported here applies to the following samples:

TD10414-1, TD10414-2, TD10414-3

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2	Benzene	25	23.1	92	68-119
75-27-4	Bromodichloromethane	25	22.9	92	72-118
67-66-3	Chloroform	25	21.1	84	73-122
75-34-3	1,1-Dichloroethane	25	23.5	94	72-121
75-35-4	1,1-Dichloroethylene	25	22.3	89	67-140
107-06-2	1,2-Dichloroethane	25	22.5	90	68-121
156-59-2	cis-1,2-Dichloroethylene	25	22.3	89	72-117
156-60-5	trans-1,2-Dichloroethylene	25	22.8	91	68-124
74-83-9	Methyl bromide	25	18.2	73	53-138
74-87-3	Methyl chloride	25	18.4	74	50-145
71-55-6	1,1,1-Trichloroethane	25	21.3	85	72-129
127-18-4	Tetrachloroethylene	25	25.9	104	72-132
108-88-3	Toluene	25	24.4	98	73-119
79-01-6	Trichloroethylene	25	25.2	101	73-121
75-69-4	Trichlorofluoromethane	25	18.6	74	46-152
75-01-4	Vinyl chloride	25	19.5	78	54-126
1330-20-7	Xylene (total)	75	73.0	97	74-119
	m,p-Xylene	50	48.8	98	74-119
95-47-6	o-Xylene	25	24.2	97	73-121

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	92%	72-122%
17060-07-0	1,2-Dichloroethane-D4	90%	68-124%
2037-26-5	Toluene-D8	100%	80-119%
460-00-4	4-Bromofluorobenzene	103%	72-126%

^{* =} Outside of Control Limits.

Page 1 of 1

Method: SW846 8260C

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: TD10414

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
TD10253-2MS	Z59432.D	500	10/13/17	ZQ	n/a	n/a	VZ5444
TD10253-2MSD	Z59433.D	500	10/13/17	ZQ	n/a	n/a	VZ5444
TD10253-2	Z59430.D	100	10/13/17	ZQ	n/a	n/a	VZ5444
TD10253-2 a	Z59431.D	500	10/13/17	ZQ	n/a	n/a	VZ5444

The QC reported here applies to the following samples:

TD10414-1, TD10414-2, TD10414-3

GAGN		TD10253-2	Spike	MS			MSD	MSD	DDD	Limits	
CAS No.	Compound	ug/l Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD	
71-43-2	Benzene	ND	12500	12100	97	12500	12000	96	1	68-119/12	
75-27-4	Bromodichloromethane	ND	12500	12200	98	12500	11800	94	3	72-118/16	
67-66-3	Chloroform	56.5	12500	11200	89	12500	11300	90	1	73-122/13	
75-34-3	1,1-Dichloroethane	ND	12500	12500	100	12500	12800	102	2	72-121/14	
75-35-4	1,1-Dichloroethylene	150	12500	12900	102	12500	12700	100	2	67-140/18	
107-06-2	1,2-Dichloroethane	ND	12500	11200	90	12500	10900	87	3	68-121/12	
156-59-2	cis-1,2-Dichloroethylene	34.7	12500	11600	93	12500	11700	93	1	72-117/13	
156-60-5	trans-1,2-Dichloroethylene	ND	12500	12500	100	12500	12600	101	1	68-124/15	
74-83-9	Methyl bromide	ND	12500	13600	109	12500	13300	106	2	53-138/16	
74-87-3	Methyl chloride	ND	12500	12800	102	12500	12800	102	0	50-145/17	
71-55-6	1,1,1-Trichloroethane	ND	12500	11800	94	12500	11900	95	1	72-129/14	
127-18-4	Tetrachloroethylene	139	12500	14800	117	12500	14800	117	0	72-132/14	
108-88-3	Toluene	55.0	12500	12600	100	12500	12400	99	2	73-119/13	
79-01-6	Trichloroethylene	73000 ^c	12500	84300	122* b	12500	81600	100	3	73-121/13	
75-69-4	Trichlorofluoromethane	ND	12500	13300	106	12500	12900	103	3	46-152/25	
75-01-4	Vinyl chloride	ND	12500	13600	109	12500	13600	109	0	54-126/17	
1330-20-7	Xylene (total)	ND	37500	38500	103	37500	37900	101	2	74-119/13	
	m,p-Xylene	60.0	25000	25800	103	25000	25400	101	2	74-119/13	
95-47-6	o-Xylene	ND	12500	12700	102	12500	12500	100	2	73-121/13	
CAGN	g (P)	MC	MCD	TID:	10252.2	ED102	-2.2 T.	•.			
CAS No.	Surrogate Recoveries	MS	MSD	10.	10253-2	TD1025	53-2 Lin	nits			
1868-53-7	Dibromofluoromethane	92%	96%	96%	,)	98%	72-	122%			
17060-07-0	1,2-Dichloroethane-D4	89%	87%	94%)	94%	68-	124%			
2037-26-5	Toluene-D8	97%	99%	100	%	100%	80-	119%			
460-00-4	4-Bromofluorobenzene	106%	107%	104	%	104%	72-	126%			

⁽a) AZ:D2

⁽b) Outside control limits due to high level in sample relative to spike amount.

⁽c) Result is from Run #2.

^{* =} Outside of Control Limits.

ACCUTEST Gulf Coast

10/25/17

SGS ACCUTEST IS PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.

e-Hardcopy 2.0
Automated Report

Technical Report for

GHD Services Inc.

52nd Street Superfund Site - OU2 Area, Phoenix, AZ

013932

SGS Accutest Job Number: TD10749

Sampling Date: 10/16/17

GHD Services Inc.

4747 N. 22nd Street Second Floor

Phoenix, AZ 85016

manfred.plaschke@ghd.com; mary.cameron@ghd.com;

sheri.finn@ghd.com; brooks.dillard@ghd.com

ATTN: Manfred Plaschke

Total number of pages in report: 17

Review standard terms at: http://www.sgs.com/en/terms-and-conditions

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Anita Patel 713-271-4700

Certifications: TX (T104704220-17-27) AR (14-016-0) AZ (AZ0769) FL (E87628) KS (E-10366) LA (85695/04004) NJ (TX010) OK (2017-002) VA (8999)

This report shall not be reproduced, except in its entirety, without the written approval of SGS Accutest. Test results relate only to samples analyzed.

Laboratory Director

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	4
Section 3: Sample Results	5
3.1: TD10749-1: GW-101617-PG-65	
3.2: TD10749-2: GW-101617-PG-66	7
3.3: TD10749-3: TRIP BLANK	8
Section 4: Misc. Forms	9
4.1: Arizona Qualifiers	10
4.2: Chain of Custody	
Section 5: MS Volatiles - QC Data Summaries	15
5.1: Method Blank Summary	16
5.2: Blank Spike/Blank Spike Duplicate Summary	

Sample Summary

GHD Services Inc.

Job No:

TD10749

52nd Street Superfund Site - OU2 Area, Phoenix, AZ Project No: 013932

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
TD10749-1	10/16/17	09:00	10/17/17	AQ	Ground Water	GW-101617-PG-65
TD10749-2	10/16/17	12:40	10/17/17	AQ	Ground Water	GW-101617-PG-66
TD10749-3	10/16/17	00:00	10/17/17	AQ	Trip Blank Water	TRIP BLANK

Summary of Hits

Page 1 of 1

Job Number: TD10749

Account: GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Collected: 10/16/17

Lab Sample ID Client Sample ID Result/ Analyte Qual RL MDL Units Method

TD10749-1 GW-101617-PG-65

No hits reported in this sample.

TD10749-2 GW-101617-PG-66

No hits reported in this sample.

TD10749-3 TRIP BLANK

No hits reported in this sample.

Section 3 &

Sample Results		
Report of Analysis	;	
· ·		

Report of Analysis

Client Sample ID: GW-101617-PG-65

 Lab Sample ID:
 TD10749-1
 Date Sampled:
 10/16/17

 Matrix:
 AQ - Ground Water
 Date Received:
 10/17/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 K357561.D 1 10/18/17 14:59 EM n/a n/a VK2131

Run #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q				
71-43-2	Benzene	ND	1.0	ug/l				
75-27-4	Bromodichloromethane	ND	1.0	ug/l				
67-66-3	Chloroform	ND	1.0	ug/l				
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l				
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l				
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l				
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l				
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l				
74-83-9	Methyl bromide	ND	2.0	ug/l				
74-87-3	Methyl chloride	ND	2.0	ug/l				
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l				
127-18-4	Tetrachloroethylene	ND	1.0	ug/l				
108-88-3	Toluene	ND	1.0	ug/l				
79-01-6	Trichloroethylene	ND	0.50	ug/l				
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l				
75-01-4	Vinyl chloride	ND	0.50	ug/l				
1330-20-7	Xylene (total)	ND	1.0	ug/l				
	m,p-Xylene	ND	1.0	ug/l				
95-47-6	o-Xylene	ND	0.50	ug/l				
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits				
1868-53-7	Dibromofluoromethane	101%		72-122%				
17060-07-0	1,2-Dichloroethane-D4	115%		68-124%				
2037-26-5	Toluene-D8	99%	99% 80-119					
460-00-4	4-Bromofluorobenzene	99%	72-126%					

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Report of Analysis

Client Sample ID: GW-101617-PG-66

Lab Sample ID: TD10749-2 **Date Sampled:** 10/16/17 Matrix: AQ - Ground Water **Date Received:** 10/17/17 Method: SW846 8260C **Percent Solids:** n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF **Prep Batch Analytical Batch** Analyzed By **Prep Date** Run #1 K357562.D 1 10/18/17 15:23 EM n/aVK2131 n/a Run #2

Purge Volume Run #1 5.0 mlRun #2

CAS No.	Compound	Result	RL	Units Q			
71-43-2	Benzene	ND	1.0	ug/l			
75-27-4	Bromodichloromethane	ND	1.0	ug/l			
67-66-3	Chloroform	ND	1.0	ug/l			
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l			
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l			
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l			
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l			
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l			
74-83-9	Methyl bromide	ND	2.0	ug/l			
74-87-3	Methyl chloride	ND	2.0	ug/l			
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l			
127-18-4	Tetrachloroethylene	ND	1.0	ug/l			
108-88-3	Toluene	ND	1.0	ug/l			
79-01-6	Trichloroethylene	ND	0.50	ug/l			
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l			
75-01-4	Vinyl chloride	ND	0.50	ug/l			
1330-20-7	Xylene (total)	ND	1.0	ug/l			
	m,p-Xylene	ND	1.0	ug/l			
95-47-6	o-Xylene	ND	0.50	ug/l			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits			
1868-53-7	Dibromofluoromethane	102%		72-122%			
17060-07-0	1,2-Dichloroethane-D4	114%		68-124%			
2037-26-5	Toluene-D8	99% 80-119					
460-00-4	4-Bromofluorobenzene	98%		72-126%			

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: TRIP BLANK

 Lab Sample ID:
 TD10749-3
 Date Sampled:
 10/16/17

 Matrix:
 AQ - Trip Blank Water
 Date Received:
 10/17/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 K357560.D 1 10/18/17 14:34 EM n/a n/a VK2131
Run #2

Purge Volume

Run #1 5.0 ml

Run #2

CAS No.	Compound	Result	RL	Units Q					
71-43-2	Benzene	ND	1.0	ug/l					
75-27-4	Bromodichloromethane	ND	1.0	ug/l					
67-66-3	Chloroform	ND	1.0	ug/l					
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l					
75-35-4	1,1-Dichloroethylene	ND	1.0	ug/l					
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l					
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	ug/l					
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	ug/l					
74-83-9	Methyl bromide	ND	2.0	ug/l					
74-87-3	Methyl chloride	ND	2.0	ug/l					
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l					
127-18-4	Tetrachloroethylene	ND	1.0	ug/l					
108-88-3	Toluene	ND	1.0	ug/l					
79-01-6	Trichloroethylene	ND	0.50	ug/l					
75-69-4	Trichlorofluoromethane	ND	4.0	ug/l					
75-01-4	Vinyl chloride	ND	0.50	ug/l					
1330-20-7	Xylene (total)	ND	1.0	ug/l					
	m,p-Xylene	ND	1.0	ug/l					
95-47-6	o-Xylene	ND	0.50	ug/l					
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits					
1868-53-7	Dibromofluoromethane	101%		72-122%					
17060-07-0	1,2-Dichloroethane-D4	115%		68-124%					
2037-26-5	Toluene-D8	100% 80-1							
460-00-4	4-Bromofluorobenzene	100%	72-126%						

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- · Arizona Qualifiers
- Chain of Custody

Arizona Qualifiers

Page 1 of 1

Job Number: TD10749

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

The following Arizona qualifiers have been applied to data and/or QC in this report.

Qual

Q9 Insufficient sample received to meet method QC requirements.

)	S(E	is '	Λ	CCUT	EGT	7		Lundy A						-	FED_	EX Trackir	²⁹ #111	3 86	76		ttle Order C				
		1 369	P	10001	ha VI		(408)	588-020	0 F/	AX: (40	8) 58	8-02	01		SGS	Accutest (Juote #			SG	S Accutest	NC Job #:	-	1)	10197
(Client / Re	porting Infor	mation				Pro	ect Info	mation									— т	Re	queste	d Analys	is			Matrix Codes
Company Nan		40				Project N	lame: o	42			***************************************	********	************												WW- Wastewater GW- Ground Water
Address						Street																			SW- Surface Water
City		Sta	ate		Zip	City				Sta	ate				\dashv										SO- Soil
Project Conta	ict:					Project #									_										Ol-Oil WP-Wipe
MANIFRED PLASCHKE							013	132 -	130						_										LIQ - Non-aqueous Liquid
						EMAIL:													1			- 100			AIR
Samplers's Na	ame TRICK	GREE,	NE			<u> </u>	rchase Orde	r#							2	2				\subseteq		4			DW- Drinking Water (Perchlorate Only)
3GS Accutest						Collect	ion		# of	Numb	П			П		90			\	M.	Nd.	37/		ŀ	
				of Collection	7.1	Time	Sampled by	1	bottles	ig Hg	HNO3	H2SO4	NONE NaHSO4	MEOH	ENCC		_			λ	4/	44			LAB USE ONLY
1	GW-	101617-			10/12/11	0900	16	6W	3	\vdash	-	4	_	\sqcup	X	<u> </u>				4	2				
2				66	11	1240		1	3	Ш	\perp	_			×				1			_			
\rightarrow	TRIP	BLANA	2				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	wW	"2	1		_	_		X					- 4					
				***************************************								4													
																				5					
	***************************************										Ш									, l					
	Turnaround	Time (Busines	ss days)	Ann	roved By:/ Da	la:	Com	Data De			on								- 0	Comme	nts / Rema	rks			
	10 Day							nercial "E			QC sur	nmari	ies												
t-control of the control of the cont	5 Day						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	nerical "E			and c	hrom	atogran	ıs					- Contractor						
	3 Day 2 Day						harman	1 - Level or Geotra			DD Fo	rmat_				-									
	1 Day			emberses			Provid	e EDF Gle	bal ID _																
	Same Day	data avail	abla \#	A Loblinia			Provid	e EDF Lo	gcode:																
_				ple Custody	must be do	cumente	d below ea	ch time :	samples	chang	e pos	sess	ion, inc	luding	g courie	r delive	ry.								
Relinquistic	d by Shampler:	li.			Date Time;		Received By	:	1			Reling	uished B	ν: _	ili		Date Tim		16.00	Red	FED.	6,			
1 (j) Relinquished	d by:	14		\	10 16 17 Date Time:	7 135	Received By	711	hren	M	7	2 U Reling	uished E	7) 0	nan	V'	Date Tim	0/17	1600	Rec	TCU ceived By:	ĽΧ			
3		****		\sim			3 /2		/ Pro	013	0	4			-					4					
Relinquished	i by:				Date Time:	-	Received By	:	-			Custo	dy Seal #		1		ttle / Pres. 'oc? Y / N		Headspac			On Ice	-		Cooler Temp.
5					1		5								Label	s maten G	our TIN	Sep	arate Rec	erving C	heck List us	eu: Y/N	•		0.9 00

TD10749: Chain of Custody

Page 1 of 4

1)10749	·		Custody Seal Initial W. Date Utt.
TC#	6-6		Form: S/M027-06 Rev 10/24/2016
COOLER TEMP FORM	Delivered by (circle one): (FedEx/UPS ALGC Driver Client Date: (C/(1/17) Client: Cooler Number: Thermometer ID: (A) CF. °C (Currented Tenn °C)	SAMPLES CONTAINEE	TO SAMPLE REPORTED TO SAMPLE REP

TD10749: Chain of Custody Page 2 of 4

Page 1 of 2

SGS Accutest Sample Receipt Summary

Job Number: TD107	'49	Client	: GHD			Project:	042			
Date / Time Received:			Delivery	Method:		Airbill #'s:	770511138676			
No. Coolers:1	Therm	ID: IR9;				Temp Adjus	tment Factor: 0;	;		
Cooler Temps (Initial/Adjusted	i): <u>#1: (</u>	(0.9/0.9);								
Cooler Security Y	or N			Υ ο	r N	Sample Integrity - Docume	ntation	Υ	or N	
1. Custody Seals Present:		3. COC		\checkmark		Sample labels present on bo	ottles:	✓		
2. Custody Seals Intact:		4. Smpl Da	tes/Time OK	\checkmark		Container labeling complete:	:	✓		
Cooler Temperature	Y or	<u>r N</u>				3. Sample container label / CO	C agree:	✓		
1. Temp criteria achieved:	✓					Sample Integrity - Condition	<u>on</u>	<u>Y</u>	or N	
Cooler temp verification:			_			Sample recvd within HT:		✓		
3. Cooler media:	Ice ((Bag)	_			2. All containers accounted for:		✓		
Quality Control_Preservation	<u>Y o</u>	or N N/	<u>A</u>	WTB	STB	3. Condition of sample:	_		Intact	
1. Trip Blank present / cooler:	✓]	✓		Sample Integrity - Instructi	<u>ions</u>	Y	or N	N/A
2. Trip Blank listed on COC:	✓]			1. Analysis requested is clear:		✓		
3. Samples preserved properly:	✓					2. Bottles received for unspeci	fied tests		✓	
4. VOCs headspace free:	✓]			3. Sufficient volume recvd for a	analysis:	✓		
						Compositing instructions cle	ear:			\checkmark
						5. Filtering instructions clear:				✓
Comments						-				

TD10749: Chain of Custody

Page 3 of 4

Sample Receipt Log

 Job #:
 TD10749
 Date / Time Received:
 10/17/2017 9:30:00 AM
 Initials:
 BG

Client: GHD

Cooler#	Sample ID:	Vol	Bot #	Location	Pres	рН	Therm ID	Initial Temp	Therm CF	Corrected Temp
1	TD10749-1	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	0.9	0	0.9
1	TD10749-1	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	0.9	0	0.9
1	TD10749-1	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	0.9	0	0.9
1	TD10749-2	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	0.9	0	0.9
1	TD10749-2	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	0.9	0	0.9
1	TD10749-2	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	0.9	0	0.9
1	TD10749-3	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	0.9	0	0.9
1	TD10749-3	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR9	0.9	0	0.9

TD10749: Chain of Custody

Page 4 of 4

Section 5

MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: SW846 8260C

Method Blank Summary Job Number: TD10749

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample File II	D DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VK2131-MB K3575	552.D 1	10/18/17	EM	n/a	n/a	VK2131

The QC reported here applies to the following samples:

TD10749-1, TD10749-2, TD10749-3

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	0.50	ug/l
75-27-4	Bromodichloromethane	ND	0.50	ug/l
67-66-3	Chloroform	ND	0.50	ug/l
75-34-3	1,1-Dichloroethane	ND	0.50	ug/l
75-35-4	1,1-Dichloroethylene	ND	0.50	ug/l
107-06-2	1,2-Dichloroethane	ND	0.50	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	0.50	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	0.50	ug/l
74-83-9	Methyl bromide	ND	0.50	ug/l
74-87-3	Methyl chloride	ND	0.50	ug/l
71-55-6	1,1,1-Trichloroethane	ND	0.50	ug/l
127-18-4	Tetrachloroethylene	ND	0.50	ug/l
108-88-3	Toluene	ND	0.50	ug/l
79-01-6	Trichloroethylene	ND	0.50	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l
75-01-4	Vinyl chloride	ND	0.50	ug/l
1330-20-7	Xylene (total)	ND	1.5	ug/l
	m, p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	0.50	ug/l

CAS No. **Surrogate Recoveries** Limits

1868-53-7	Dibromofluoromethane	100%	72-122%
17060-07-0	1,2-Dichloroethane-D4	112%	68-124%
2037-26-5	Toluene-D8	99%	80-119%
460-00-4	4-Bromofluorobenzene	98%	72-126%

Page 1 of 1

Method: SW846 8260C

Blank Spike/Blank Spike Duplicate Summary

Job Number: TD10749

Account: CRAAZP GHD Services Inc.

Project: 52nd Street Superfund Site - OU2 Area, Phoenix, AZ

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
VK2131-BS	K357549.D	1	10/18/17	EM	n/a	n/a	VK2131
VK2131-BSD a	K357550.D	1	10/18/17	EM	n/a	n/a	VK2131

The QC reported here applies to the following samples:

TD10749-1, TD10749-2, TD10749-3

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	25	23.0	92	23.8	95	3	68-119/30
75-27-4	Bromodichloromethane	25	25.1	100	25.7	103	2	72-118/30
67-66-3	Chloroform	25	24.3	97	25.1	100	3	73-122/30
75-34-3	1,1-Dichloroethane	25	25.9	104	26.7	107	3	72-121/30
75-35-4	1,1-Dichloroethylene	25	25.8	103	26.7	107	3	67-140/30
107-06-2	1,2-Dichloroethane	25	25.0	100	25.6	102	2	68-121/30
156-59-2	cis-1,2-Dichloroethylene	25	22.9	92	24.2	97	6	72-117/30
156-60-5	trans-1,2-Dichloroethylene	25	25.8	103	26.5	106	3	68-124/30
74-83-9	Methyl bromide	25	22.9	92	22.6	90	1	53-138/30
74-87-3	Methyl chloride	25	23.3	93	24.7	99	6	50-145/30
71-55-6	1,1,1-Trichloroethane	25	28.3	113	28.8	115	2	72-129/30
127-18-4	Tetrachloroethylene	25	24.8	99	26.5	106	7	72-132/30
108-88-3	Toluene	25	23.2	93	24.6	98	6	73-119/30
79-01-6	Trichloroethylene	25	24.5	98	25.2	101	3	73-121/30
75-69-4	Trichlorofluoromethane	25	30.5	122	30.5	122	0	46-152/30
75-01-4	Vinyl chloride	25	21.6	86	22.1	88	2	54-126/30
1330-20-7	Xylene (total)	75	72.2	96	74.9	100	4	74-119/30
	m,p-Xylene	50	48.7	97	50.3	101	3	74-119/30
95-47-6	o-Xylene	25	23.5	94	24.5	98	4	73-121/30

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
1868-53-7	Dibromofluoromethane	103%	101%	72-122%
17060-07-0	1,2-Dichloroethane-D4	109%	106%	68-124%
2037-26-5	Toluene-D8	98%	99%	80-119%
460-00-4	4-Bromofluorobenzene	101%	101%	72-126%

(a) AZ:Q9

^{* =} Outside of Control Limits.

PROJECT NAME 52nd Street OU2

LOCATION:

DATE

Phoenix, Arizona 9/2/17 Patrick Greene /

JOB NO

13932-130

echnician

	I DOMESTIC
The State of the S	
The Companies	

CLIENT	The Companies			Allowa Control		
The second second	D	EPTH TO			S DEPTH TO	COMMENTS
OBSERVATION	ON	WATER		W/	ATER	
WELL		A		feet	B date/time	
	feet	date/t	o940	DRY	6/1/17	
AS02	DPY	9/5	1640	103.45	6/1/17	
CRA01	103.95	4/2	1500	99.85	6/1/17	
DM515-210	99.09	9/5	1315	104.25	6/1/17	
EW06	104.20	9/5	1630	107.15	6/1/17	Transducer
EW07	95.09	9/2	0840	94.00	6/1/17	
EW19-D	DRY	9/2	0845	Dry	6/1/17	
EW19-S	ORY	9/2	0830	Dry	6/1/17	
EW21	48.81	4/2	0 700	97.35	6/1/17	
EW22-D	105.90	9/2	07/6	105.05	6/1/17	
EW22-S EWM	130 10	9/2	1520	128.30	6/1/17	
EWN	163.20	9/5	1730	138.70	6/1/17	
EWS	139.01	9/5	1700	138.75	6/1/17	
EWSPZ1	104.70	9/2	1515	104.20	6/1/17	
NW01	94 10	9/2	1500	94.35	6/1/17	
NW02	10781	9/5	1505	107.20	6/1/17	Transducer
NW03	103.30	9/5	1515	The state of the s	6/1/17	Transaucei
NW04-D	106 30	9/5	15 50	104.22	6/1/17	
NW04-S	104.03	9/5	16 00	105.15	6/1/17	Transduces
NW05-S	105.25	9/5	1620	104.63	6/1/17	Transducer
NW06-D	103.63	9/25	0730	102.75	6/1/17	
NW06-S				102.55		
S THE RESERVE OF THE PARTY OF T	103 55	9/35	0735	101.25	6/1/17	2 4
NW07-D	100.80	9/5	1335		6/1/17	7 2×
NW07-M	96.50	7/5	NAME OF TAXABLE PARTY.	101.45	6/1/17	3 ? 2 *
NW07-S	102.25	9/5	1345	102.05	6/1/17	2 %
NW08-D	100.80	9/5	0810	101.90	6/1/17	7 7 2x
NW08-M	102.01	9/5	0815	103.50	6/1/17	check :
NW08-S	103.20	9/5	0320	102.82	6/1/17)
NW09-D	105.51	9/5	1100	105.80	6/1/17	
NW09-D2	105.35	9/5	1105	105.45	6/1/17	
NW09-M		9/5	1110	104.50	6/1/17	Transducer
NW10-D	104.35	4/5	0930	104.85	6/1/17	
The second second	103.90	9/5	1305	104.00	6/1/17	
NW11-D			THE RESERVE THE PARTY NAMED IN	103.80	6/1/17	Transducer
NW11-M	103.70	9/5	1310	93.65	6/1/17	CAR
NW12-D	96.50	9/5	1740			
NW13-D	103.86	4/5	0905	104.03	6/1/17	
NW13-M	103 95	9/5	0910	104.15	6/1/17	
NW14-D	103.16	4/5	0840	103.12	6/1/17	
NW14-M	103.20	9/5	0850	103.20	6/1/17	
Comments				ELCANING N		

				1		
			WATER L	EVEL RECORDS	4	
The second	street OU	2				Phoenix, Arizona
PROJECT NA	AME 52nd Street OU.			DATE	A	9/2/17
JOB NO :	13932-130			Di III		Patrick Greene /
- Carrier	The Companies			Technician		Kyle Weber
CLIENT						ALL .
OBSERVATION	D D	EPTH TO			OUS DEPTH TO	COMMENTS
WELL	7	WATER		V	WATER	
The same of the sa		A		To a	В	· ·
THE C	feet	date/t		feet 102.60	6/1/17	
NW15-S	102.10	9/5	1500	102.60	6/1/17	
NW16-D NW16-M	103.85	9/5	1400	104.50	6/1/17	
NW17-S	104 60	9/5	1410	103.65	6/1/17	
NW18-M	103.00	9/5	1525	102.45	6/1/17	
NW18-S	102.90	4/5	1540	102.35	6/1/17	
NW19-D	103.91	9/2	1230	104.48	6/1/17	
NW19-M	103.95	9/2	1235	104.55	6/1/17	
NW21-S	14.20	9/2	1010	96.70	6/1/17	
NW22-D	102.81	9/2	0945	102.40	6/1/17	
NW22-S	102.40	4/2	0940	102.20	6/1/17	
NW23-D 102.7		9/2	10545	103.40	6/1/17	
NW23-S	101.50	9/2	10 40	102.20	6/1/17	
NW24-D	78.26	9/2	1110	79.60	6/1/17	
NW24-S	78 35	9/2	1115	79.70	6/1/17	
NW25-S	84.92	9/2	1135	86.40	6/1/17	
OU312-D	97.51	4/2	0855	96.75	6/1/17	
OU312-M	101-79	9/2	0900	101.15	6/1/17	
OU313-D	105.67	9/2	0520	102.90	6/1/17	
OU313-M	106.15	9/2	0825	105.35	6/1/17	
OU314-D	97.31	9/2	0510	96.50	6/1/17	
OU314-M	105.95	9/2	0815	105.02	6/1/17	2
OU320-M	105.48	4/5	1030	105.90		
OU320-S	105.40	9/5	1035	105.80	6/1/17	
ALCOHOLD CO. CO.	102 50	THE RESERVE OF THE PERSON NAMED IN	-	100000000000000000000000000000000000000	6/1/17	
PHXA-06		4/5	1450	102.98	6/1/17	d .
PZ01-D	108.80	9/5	17/5	108.20	6/1/17	
PZ01-S	108.77	9/6	1720	108.18	6/1/17	
PZ02-D	114. 25	9/5	1730	113.52	6/1/17	
PZ02-S	114.27	The second secon	1735	113.55	6/1/17	
TEW01	109.70	9/5	1725	109.02	6/1/17	
BC-16	74.50	9/2	1025	75.70	6/1/17	
EW-03	75.10	9/2	1030	76.40	6/1/17	
DM-509	74.97		1040	76.20	6/1/17	
PZ01-A	DRY	THE RESERVE AND ADDRESS OF THE PARTY OF THE	1200	Dry	6/1/17	
PZ01-B	75.10	9/2	1205	76.35	6/1/17	
Comments						

72-7 106.15 +12? A 96.20

SEPTEMBER ZOI	Po	REHAB
1 1D DTW (9/5)	PRE - REH	AB DIW (10/6/17)
W12-D 96.50	200.02	97.25
WOY-M 96.50	102.30	102.41
W04-S 104.03	105.85	105.90
W03 103.30	103.35	103.35
W08-S 103.20	102.30	103.24
W08-D 100.80	102.00	102.85
WO8-M 102.01	101.60	103.97

PROJECT NAME:		52 nd Street	t OU2			PROJECT	No.: _0	13932-130
DATE OF WELL DEVEL	OPMENT:	9	6/17	1200 35.				
DEVELOPMENT CREW	MEMBERS:	PG	DH					
PURGING METHOD:		3" Submer	sible					
SAMPLE NO.:		GW - 0	590617-	PG - 0	6	W-6900	517 - Pe	5.02
SAMPLE TIME:		اا دم	10		, 6	L-> 1	330	
WELL INFORMATION	ON	(R				·		
WELL NUMBER:		NW04-D			- ·			
WELL TYPE (diamete	er/material)	4" / steel						
MEASURING POINT EI	LEVATION:	1099.92 ft	•					
STATIC WATER DEPTH	4:	106.	36			ELEVATIO	N: <u>9</u>	·
Воттом Фертн:		204 ft.				ELEVATIO	n:	
WATER COLUMN LEN	G TH:	9-	7-7					÷
SCREENED INTERVAL:		183-203 ft				/ F	1000 Z	2 GPM
WELL VOLUME:		63.	89 (3)	= 19	1. 68/	5		
Note: For 4-inch	n diameter well:	1 foot = 0 1 meter =	.66 gallons 2 liters		38	Ī		TOTAL/
					1 3			
		UNITS	1	2	3	4	5	AVERAGE
TIME VOLUME PURGED (volume/total volu	ume):	Gal	40	80	120	160	200	AVERAGE
VOLUME PURGED	ume):							
VOLUME PURGED (volume/total volu	10		40	80	120	160	200	
VOLUME PURGED (volume/total volume/total):	(+/- 1 ^{oF}):	Gal	40	80 7.05	120 6.98	160	200 4.65	
VOLUME PURGED (volume/total volume/total volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE ((+/- 1 ^{oF}): (+/- 15%):	Gal	40 7.03 84.0	80 7.05 81.3	120 6.98 81.7	160 7.07 81.3	200 4.65 81.5	
VOLUME PURGED (volume/total volume/total volume/total volume/total volume/total volume/total ph (+/-0.2): FIELD TEMPERATURE (FIELD CONDUCTIVITY ((+/- 1 ^{oF}): (+/- 15%):	Gal	40 7.03 84.0	80 7.05 81.3	120 6.98 81.7	160 7.07 81.3	200 4.65 81.5	
VOLUME PURGED (volume/total volume/total volume/total volume/total volume/total volume/total volume/total ph (+/-0.2): FIELD TEMPERATURE (FIELD CONDUCTIVITY (OXIDATION REDUCTION	(+/- 1 ^{oF}): (+/- 15%):	Gal	40 7.03 84.0	80 7.05 81.3	120 6.98 81.7	160 7.07 81.3	200 4.65 81.5	
VOLUME PURGED (volume/total volume/total volume/total volume/total volume/total volume/total volume/total ph (+/-0.2): FIELD TEMPERATURE (FIELD CONDUCTIVITY (OXIDATION REDUCTION DISSOLVED OXYGEN	(+/- 1 ^{oF}): (+/- 15%):	Gal	40 7.03 84.0	80 7.05 81.3	120 6.98 81.7 3323	160 7.07 81.3	200 4.65 81.5	
VOLUME PURGED (volume/total volume/total volume/total volume/total volume/total volume/total volume/total ph (+/-0.2): FIELD TEMPERATURE (FIELD CONDUCTIVITY (OXIDATION REDUCTION DISSOLVED OXYGEN TURBIDITY	(+/- 1 ^{oF}): (+/- 15%):	Gal	40 7.03 84.0 3309	80 7.05 81.3 3304	120 6.98 81.7 3323	160 7.07 81.3	200 4.65 81.5	
VOLUME PURGED (volume/total volume/total volume/total volume/total volume/total volume/total volume/total ph (+/-0.2): FIELD TEMPERATURE (FIELD CONDUCTIVITY (OXIDATION REDUCTION DISSOLVED OXYGEN TURBIDITY CLARITY:	(+/- 1 ^{oF}): (+/- 15%):	Gal	40 7.03 84.0 3309	80 7.05 81.3 3304	120 6.98 81.7 3323	160 7.07 81.3	200 4.65 81.5	
VOLUME PURGED (volume/total volume/total volume/total volume/total volume/total volume/total ph (+/-0.2): FIELD PH (+/-0.2): FIELD TEMPERATURE (FIELD CONDUCTIVITY (OXIDATION REDUCTION DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR:	(+/- 1 ^{oF}): (+/- 15%):	Gal	40 7.03 84.0 3309	80 7.05 81.3 3304 Clean	120 6.98 81.7 3323 Clur- clur	160 7.07 81.3	200 4.65 81.5	
VOLUME PURGED (volume/total volume/total volume/total volume/total volume/total volume/total ph (+/-0.2): FIELD PH (+/-0.2): FIELD TEMPERATURE (FIELD CONDUCTIVITY (OXIDATION REDUCTION DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR: ODOR:	(+/- 1 ^{0F}): (+/- 15%): N POTENTIAL	oF	40 7.03 84.0 3309	80 7.05 81.3 3304 Clean	120 6.98 81.7 3323 Clur- clur	160 7.07 81.3	200 4.65 81.5	

PROJECT NAME:	52 nd Stree	t OU2			PROJECT	No.:	013932-130
DATE OF WELL DEVELOPMENT:		9/7/17					
DEVELOPMENT CREW MEMBERS:	<u> </u>	PG. DH	/				
PURGING METHOD:	3" Subme	rsible					
SAMPLE NO.:	6w-	09071	7-76-	03	5		
SAMPLE TIME:	12.50	5					
WELL INFORMATION							
WELL NUMBER:	NW09-M						
WELL TYPE (diameter/material)	4" / steel						
MEASURING POINT ELEVATION:	1099.42 ft	•					
STATIC WATER DEPTH:	105	.20		<u></u>	ELEVATION	ON:	
Воттом DEPTH:	190.5 ft.	··			ELEVATIO	ON:	
WATER COLUMN LENGTH:	8	5.3					
SCREENED INTERVAL:	170-190ft.						
WELL VOLUME:	55	78 (3)	= 167	35/5			
Note: For 4-inch diameter well:	1 foot = 1 foot = 0.66 gallons (us) 1 meter = 2 liters						
	Units	1	2	3	4	5	TOTAL/ AVERAGE
Torr							
Time Volume Purged (volume/total volume):	Gal	35	70	105	140	175	
FIELD pH (+/-0.2):		7.55	7.26	7.29	7.33	7.33	
FIELD TEMPERATURE (+/- 1°F):	oF	82.8	83.8	83.4	82.9	834	
FIELD CONDUCTIVITY (+/- 15%):		1441	1495	1495	1487	1475	
Oxidation Reduction Potential							
DISSOLVED OXYGEN							
7	<						
TURBIDITY							
CLARITY:		CLEAR -					The same of the sa
		CLEAR -			→		500.0
CLARITY:		Ī			1		
CLARITY: COLOR:		CLEAR-			-		
CLARITY: COLOR: ODOR:		CLEAR-					
CLARITY: COLOR: ODOR:		CLEAR-					

PROJECT NAME:		52 nd Street	OU2			PROJECT	No.: 0:	13932-130
DATE OF WELL DEVE	LOPMENT:		9/8/17					
DEVELOPMENT CREW	/ MEMBERS:	P	G DH	1				
Purging Method:		3" Submer	sible					
SAMPLE NO.:		64	J - 090	817 -	PG- OL	I, GW	09081	7-PG-05
SAMPLE TIME:		1	▶ 07	55		L	₩ 080	<i>o</i> \
WELL INFORMATI	ON		Ø				(DUP	7-PG-05 0
WELL NUMBER:		NW02						
WELL TYPE (diamet	er/material)	4" / pvc						
MEASURING POINT E	ELEVATION:	1101.83 ft	•	<u>.</u> .				
STATIC WATER DEPT	н:	107	85			ELEVATIO	n:	
Воттом DEPTH:		193 ft.				ELEVATIO	n:	
WATER COLUMN LEN	NGTH:	<u> </u>	515		Wa.		FL	οω
SCREENED INTERVAL:	:	173-193 ft					GPA	οω 123
WELL VOLUME:		55.	688 (3)	= 16	7.06/9	5		
Note: For 4-incl	h diameter well:	1 foot = 0.66 gallons (us) 1 meter = 2 liters						
					T	T	T	the state of the s
		UNITS	1	2	3	4	5	TOTAL/ AVERAGE
TIME VOLUME PURGED	Š.	<i>Units</i> Gal						
TIME VOLUME PURGED (volume/total vol	lume):		34	2 68	102	136	170	
VOLUME PURGED	lume):	Gal		68 7.28	102			
VOLUME PURGED (volume/total vol	·		34	68 7.28 77.9	102 7.26 77.9	136	170	
VOLUME PURGED (volume/total vol FIELD pH (+/-0.2):	(+/- 1 ^{oF}):	Gal	34 7.33	68 7.28	102	136	170	
VOLUME PURGED (volume/total vol FIELD pH (+/-0.2): FIELD TEMPERATURE	(+/- 1 ^{of}): (+/- 15%):	Gal	34 7.33 77.6	68 7.28 77.9	102 7.26 77.9	136 7.27 78.1	170 7.22 78.6	
VOLUME PURGED (volume/total vol FIELD pH (+/-0.2): FIELD TEMPERATURE FIELD CONDUCTIVITY	(+/- 1 ^{of}): (+/- 15%):	Gal	34 7.33 77.6	68 7.28 77.9	102 7.26 77.9	136 7.27 78.1	170 7.22 78.6	
VOLUME PURGED (volume/total vol FIELD pH (+/-0.2): FIELD TEMPERATURE FIELD CONDUCTIVITY OXIDATION REDUCTION	(+/- 1 ^{of}): (+/- 15%):	Gal	34 7.33 77.6	68 7.28 77.9	102 7.26 77.9	136 7.27 78.1	170 7.22 78.6	
VOLUME PURGED (volume/total vol FIELD pH (+/-0.2): FIELD TEMPERATURE FIELD CONDUCTIVITY OXIDATION REDUCTIO DISSOLVED OXYGEN	(+/- 1 ^{of}): (+/- 15%):	Gal	34 7.33 77.6	68 7.28 77.9	102 7.26 77.9	136 7.27 78.1	170 7.22 78.6	
VOLUME PURGED (volume/total vol FIELD pH (+/-0.2): FIELD TEMPERATURE FIELD CONDUCTIVITY OXIDATION REDUCTION DISSOLVED OXYGEN TURBIDITY	(+/- 1 ^{of}): (+/- 15%):	Gal	34 7.33 77.6 2024	68 7.28 77.9	102 7.26 77.9	136 7.27 78.1	170 7.22 78.6	
VOLUME PURGED (volume/total vol FIELD pH (+/-0.2): FIELD TEMPERATURE FIELD CONDUCTIVITY OXIDATION REDUCTION DISSOLVED OXYGEN TURBIDITY CLARITY:	(+/- 1 ^{of}): (+/- 15%):	Gal	34 7.33 77.6 2024 CLEAR	68 7.28 77.9	102 7.26 77.9	136 7.27 78.1	170 7.22 78.6	
VOLUME PURGED (volume/total volume/total volume/total volume/total volume/total volume/total volume/total volume/total volume/total philosofthy color:	(+/- 1 ^{of}): (+/- 15%):	Gal	34 7.33 77.6 2024 CLEAR CLEAR	68 7.28 77.9	102 7.26 77.9	136 7.27 78.1	170 7.22 78.6	
VOLUME PURGED (volume/total vol FIELD pH (+/-0.2): FIELD TEMPERATURE FIELD CONDUCTIVITY OXIDATION REDUCTIO DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR: ODOR:	(+/- 1 ^{of}): (+/- 15%):	Gal	34 7.33 77.6 2024 CLEAR CLEAR	68 7.28 77.9	102 7.26 77.9	136 7.27 78.1	170 7.22 78.6	
VOLUME PURGED (volume/total vol FIELD pH (+/-0.2): FIELD TEMPERATURE FIELD CONDUCTIVITY OXIDATION REDUCTIO DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR: ODOR:	(+/- 1 ^{of}): (+/- 15%):	Gal	34 7.33 77.6 2024 CLEAR CLEAR	68 7.28 77.9	102 7.26 77.9	136 7.27 78.1	170 7.22 78.6	

PROJECT NAME:	52 nd Stree	t OU2			PROJECT	No.:	013932-130
DATE OF WELL DEVELOPMENT:		9/8/17	7				
DEVELOPMENT CREW MEMBERS:		PG, DH					
Purging Method:	3" Submer	rsible					0.7
SAMPLE NO.:	6w	1-0908	17- PG	- 06 ,	GW= 090.	17-86	
SAMPLE TIME:		1-0908 1-7 130 (Fire b	00		<i>←</i> > /3	20	
WELL INFORMATION		(FIROB	BLANK)				
WELL NUMBER:	CRA-01						
WELL TYPE (diameter/material)	4" / steel						
MEASURING POINT ELEVATION:	1106.4 ft.						
STATIC WATER DEPTH:	105	50			ELEVATIO	n:	
Воттом DEPTH:	126 ft.				ELEVATIO	N:	
WATER COLUMN LENGTH:		21,00					
SCREENED INTERVAL:	105.5-125	.5 ft.					
WELL VOLUME:		. 73 (3	3) = 4	11.202			
Note: For 4-inch diameter well:	1 foot = 0 1 meter =	0.66 gallons (2 liters	us)	Î			TOTAL/
	UNITS	1	2	3	4	5	AVERAGE
TIME VOLUME PURGED (volume/total volume):	Gal	10	20	30	40	50	
FIELD pH (+/-0.2):		7.69	7.36	726	7.26	723	
FIELD TEMPERATURE (+/- 1°F):	oF	81.5	80.3	80.4	80.4	81.7	
FIELD CONDUCTIVITY (+/- 15%):		1797	2009	2033	2042	2025	
Oxidation Reduction Potential							
DISSOLVED OXYGEN		-				,	
TURBIDITY		<u> </u>					
CLARITY:		CLEAR	_				
COLOR:		CLEAR	<u> </u>		\sim	(
ODOR:		NONE	-		-		
Notes:		5 3 2 7 2 3 W					
12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -				0.0000 000			

PROJECT NAME:		52 nd Street	OUZ			PROJECT	No.: _	013932-130
DATE OF WELL DEVEL	OPMENT:	9/	3/17					
DEVELOPMENT CREW	MEMBERS:	P6	OH					
PURGING METHOD:		3" Submer	sible					
SAMPLE NO.:		6w ~	091117	- PG = 10				
SAMPLE TIME:		<u></u>	150					
WELL INFORMATION	ON		(BAILE	٤)				
WELL NUMBER:		NW04-S						
WELL TYPE (diamete	er/material)	4" / steel						
MEASURING POINT E	LEVATION:	1099.96ft.						
STATIC WATER DEPTH	l:	104	05			ELEVATIO	N:	
Воттом Дертн:		130.5				ELEVATIO	N:	
WATER COLUMN LEN	GTH:	20	6					
SCREENED INTERVAL:		90-130		2	/		FLOW	
WELL VOLUME:		17.	004 (3)= 51	1.01 5		0.5	GPM
Note: For 4-inch	n diameter well:	1 foot = 0 1 meter =	.66 gallons (2 liters	(us)	10.2			
		Units	1	2	3	4	5	TOTAL/ AVERAGE
		UNITS	1	2	3 Brily	4	5	_ '
TIME VOLUME PURGED					Brile			_ '
TIME VOLUME PURGED (volume/total volu	ume):	UNITS Gal	1 /0	20		4	50-	_ '
VOLUME PURGED	ume):	Gal			Brile			_ '
VOLUME PURGED (volume/total volume/			10	20	7.31/ 82/3			_ '
VOLUME PURGED (volume/total volume/total volume/total):	(+/- 1 ^{oF}):	Gal	10 8.21	20 8.35	Brila 7.31			_ '
VOLUME PURGED (volume/total volume/total vol	(+/- 1 ^{of}): (+/- 15%):	Gal	10 8.21 82.2	20 8.35 83.0	7.31/ 82/3			_ '
VOLUME PURGED (volume/total volume/total volume/total volume/total volume/total ph (+/-0.2): FIELD TEMPERATURE (FIELD CONDUCTIVITY)	(+/- 1 ^{of}): (+/- 15%):	Gal	10 8.21 82.2	20 8.35 83.0	7.31/ 82/3			_ '
VOLUME PURGED (volume/total volume/total volume/total volume/total volume/total volume/total phi (+/-0.2): FIELD TEMPERATURE (FIELD CONDUCTIVITY OXIDATION REDUCTION	(+/- 1 ^{of}): (+/- 15%):	Gal	10 8.21 82.2	20 8.35 83.0	7.31/ 82/3			_ '
VOLUME PURGED (volume/total volume/total volume/total volume/total volume/total volume/total phi (+/-0.2): FIELD TEMPERATURE (FIELD CONDUCTIVITY) OXIDATION REDUCTION DISSOLVED OXYGEN	(+/- 1 ^{of}): (+/- 15%):	Gal	10 8.21 82.2	20 8.35 83.0	7.31/ 82/3			_ '
VOLUME PURGED (volume/total volume/total volume/total volume/total volume/total volume/total phi (+/-0.2): FIELD PH (+/-0.2): FIELD TEMPERATURE (FIELD CONDUCTIVITY (F	(+/- 1 ^{of}): (+/- 15%):	Gal	10 8.21 82.2 1771	20 8.35 83.0	7.31/ 82/3			_ '
VOLUME PURGED (volume/total volume/total volume/total volume/total volume/total volume/total volume/total ph (+/-0.2): FIELD TEMPERATURE (FIELD CONDUCTIVITY) OXIDATION REDUCTION DISSOLVED OXYGEN TURBIDITY CLARITY:	(+/- 1 ^{of}): (+/- 15%):	Gal	10 8.21 82.2 1771	20 8.35 83.0	7.31/ 82/3			_ '
VOLUME PURGED (volume/total volume/total volume/total volume/total volume/total volume/total ph (+/-0.2): FIELD PH (+/-0.2): FIELD TEMPERATURE (FIELD CONDUCTIVITY (FIELD CONDUCTIVITY (FIELD CONDUCTIVITY (FIELD CONDUCTION ON TOTAL (FIELD	(+/- 1 ^{of}): (+/- 15%):	Gal oF	10 8.21 82.2 1771	20 8.35 83.0 1765 	7.31/ 82/3 1900	.40	50	_ '
VOLUME PURGED (volume/total volume/total volume/total volume/total volume/total volume/total ph (+/-0.2): FIELD PH (+/-0.2): FIELD TEMPERATURE (FIELD CONDUCTIVITY (FIELD CONDUCTIVITY (FIELD CONDUCTIVITY (FIELD CONDUCTION ON TURBIDITY (FIELD COLOR): CLARITY: COLOR: ODOR:	(+/- 1 ^{of}): (+/- 15%):	Gal oF	10 8.21 82.2 1771 CLEAR CLEAR HONE	20 8.35 83.0 1765	7.31/ 82/3 1900	.40 / / / / / / / /	50	AVERAGE
VOLUME PURGED (volume/total volume/total volume/total volume/total volume/total volume/total ph (+/-0.2): FIELD PH (+/-0.2): FIELD TEMPERATURE (FIELD CONDUCTIVITY (FIELD CONDUCTIVITY (FIELD CONDUCTIVITY (FIELD CONDUCTION ON TURBIDITY (FIELD COLOR): CLARITY: COLOR: ODOR:	(+/- 1 ^{of}): (+/- 15%):	Gal oF	10 8.21 82.2 1771 OLEAR CLEAR NONE WELL	20 8.35 83.0 1765	7.31/ 82/3 1900	40 / / / 5 min	50	AVERAGE

PROJECT NAME:	52 nd Street	OU2	- 12	1	PROJECT	No.:	013932-130
DATE OF WELL DEVELOPMENT:		1/8/17	+ 9	/11			
DEVELOPMENT CREW MEMBERS:	P	G, DH					
Purging Method:	3" Submer	sible					
SAMPLE NO.:	6W	- 09///	7 - PG	- //			
SAMPLE TIME:	L	→ 13 ³	30				
WELL INFORMATION							
WELL NUMBER:	NW07-S						
WELL TYPE (diameter/material)	4" / steel						
MEASURING POINT ELEVATION:	1094.19 ft.						
STATIC WATER DEPTH:	102	. 27			ELEVATION	ON:	
Воттом DEPTH:	131 ft.				ELEVATION	ON:	
WATER COLUMN LENGTH:	28	73				-10.1	
SCREENED INTERVAL:	90-130 ft.	()		1	1	FLOW	1.0
WELL VOLUME:	18.7	8 (3)	= 54	37/	5		GPM
Note: For 4-inch diameter well:	1 foot = 0.66 gallons (us) = 11.2.7 1 meter = 2 liters						
	1 meter =	Zliters				- 18	1 - ()
	Units	1	2	3	4	5	TOTAL/ AVERAGE
Thes	Lines a		2	3	4	5	· •
TIME VOLUME PURGED (volume/total volume):	Lines a		2 2 2	3	4	5	· •
VOLUME PURGED	UNITS	1	-				· •
VOLUME PURGED (volume/total volume):	UNITS	1	22				· •
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2):	UNITS Gal	1 // 7.19	22 7.13				· •
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F):	UNITS Gal	1 11 7.19 83.9	22 7.13 85.8				· •
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%):	UNITS Gal	1 11 7.19 83.9	22 7.13 85.8				· •
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL	UNITS Gal	1 11 7.19 83.9	22 7.13 85.8				· •
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN	UNITS Gal	1 11 7.19 83.9	22 7.13 85.8				· •
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY	UNITS Gal	1 7.19 83.9 1270	22 7.13 85.8				· •
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY:	UNITS Gal	1 7.19 83.9 1270	22 7.13 85.8				· •
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR:	UNITS Gal	1 7.19 83.9 1270	22 7.13 85.8	33	44	55	· •
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR: ODOR:	UNITS Gal	1 7.19 83.9 1270	22 7.13 85.8 1238	33		55	· •

PROJECT NAME:		52 nd Street	OU2		PROJECT	013932-130		
DATE OF WELL DEVE	LOPMENT:		1/11/17					
DEVELOPMENT CREW	MEMBERS:	PG	DH	200	<u> </u>			
PURGING METHOD:		3" Submer	sible					
SAMPLE NO.:		GW-	091117	- PG-	08			
SAMPLE TIME:		L->	0925					
WELL INFORMATI	ON							
WELL NUMBER:		NW09-D2						
WELL TYPE (diamet	er/material)	4" / steel						
MEASURING POINT E	LEVATION:	1099.30 ft						
STATIC WATER DEPT	н:	105.4	5			ELEVATIO	N:	
Воттом DEPTH:		260.5 ft.				ELEVATIO	N:	
WATER COLUMN LEN	IGTH:	15	5:05					7 - 04
SCREENED INTERVAL:		240-260 ft					iw z	3 GPN
WELL VOLUME:		10	1.40 (3) =	304 20	5/5		
Note: For 4-inch	n diameter well:	1 foot = 1 1 meter =	foot = 0.66	gallons (us)	0.84			
		I meter -	Z IIICIS	-				200 91
		UNITS	1	2	3	4	5	TOTAL/ AVERAGE
TIME VOLUME PURGED (volume/total vol FIELD pH (+/-0.2): FIELD TEMPERATURE	•		e 62 .370	120 7.31 79.8	180 7,29	240 7.35	<i>36</i> 0 7.30	AVERAGE
VOLUME PURGED (volume/total vol FIELD pH (+/-0.2):	(+/- 1 ^{oF}):	UNITS Gal	1 60 7-35	120 7.31	180 7,29 80.3	240	360 7.30 80.4	AVERAGE
VOLUME PURGED (volume/total vol FIELD pH (+/-0.2): FIELD TEMPERATURE	(+/- 1 ^{oF}): (+/- 15%):	UNITS Gal	1 60 7-35 79-4	120 7.31 79.8	180 7,29	240 7.35 81.6	<i>36</i> 0 7.30	AVERAGE
VOLUME PURGED (volume/total vol FIELD pH (+/-0.2): FIELD TEMPERATURE FIELD CONDUCTIVITY	(+/- 1 ^{oF}): (+/- 15%):	UNITS Gal	1 60 7-35 79-4	120 7.31 79.8	180 7,29 80.3	240 7.35 81.6	360 7.30 80.4	AVERAGE
VOLUME PURGED (volume/total vol FIELD pH (+/-0.2): FIELD TEMPERATURE FIELD CONDUCTIVITY OXIDATION REDUCTION	(+/- 1 ^{oF}): (+/- 15%):	UNITS Gal	1 60 7-35 79-4	120 7.31 79.8	180 7,29 80.3	240 7.35 81.6	360 7.30 80.4	AVERAGE
VOLUME PURGED (volume/total vol FIELD pH (+/-0.2): FIELD TEMPERATURE FIELD CONDUCTIVITY OXIDATION REDUCTION DISSOLVED OXYGEN	(+/- 1 ^{oF}): (+/- 15%):	UNITS Gal	1 60 7-35 79-4	120 7.31 79.8	180 7,29 80.3	240 7.35 81.6	360 7.30 80.4	AVERAGE
VOLUME PURGED (volume/total volume/total volume/total volume/total volume/total volume/total volume/total volume/total phi (+/-0.2): FIELD TEMPERATURE FIELD CONDUCTIVITY OXIDATION REDUCTION DISSOLVED OXYGEN TURBIDITY	(+/- 1 ^{oF}): (+/- 15%):	UNITS Gal	1 60 7-35 79.4 1458	120 7.31 79.8	180 7,29 80.3	240 7.35 81.6	360 7.30 80.4	AVERAGE
VOLUME PURGED (volume/total volume/total volume/total volume/total volume/total volume/total volume/total volume/total volume/total per purpose of the purpo	(+/- 1 ^{oF}): (+/- 15%):	UNITS Gal	1 60 7.35 79.4 1458	120 7.31 79.8	180 7,29 80.3	240 7.35 81.6	360 7.30 80.4	AVERAGE
VOLUME PURGED (volume/total vol FIELD pH (+/-0.2): FIELD TEMPERATURE FIELD CONDUCTIVITY OXIDATION REDUCTION DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR: ODOR:	(+/- 1 ^{of}): (+/- 15%): N POTENTIAL	UNITS Gal	1 60 7.35 79.4 1458 CLEAR	120 7.31 79.8	180 7,29 80.3	240 7.35 81.6	360 7.30 80.4	AVERAGE
VOLUME PURGED (volume/total volume/total volume/total volume/total volume/total volume/total volume/total phi (+/-0.2): FIELD TEMPERATURE FIELD CONDUCTIVITY OXIDATION REDUCTION DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR:	(+/- 1 ^{oF}): (+/- 15%):	UNITS Gal	1 60 7.35 79.4 1458 CLEAR	120 7.31 79.8	180 7,29 80.3	240 7.35 81.6	360 7.30 80.4	AVERAGE
VOLUME PURGED (volume/total vol FIELD pH (+/-0.2): FIELD TEMPERATURE FIELD CONDUCTIVITY OXIDATION REDUCTION DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR: ODOR:	(+/- 1 ^{of}): (+/- 15%): N POTENTIAL	UNITS Gal	1 60 7.35 79.4 1458 CLEAR	120 7.31 79.8	180 7,29 80.3	240 7.35 81.6	360 7.30 80.4	AVERAGE

PROJECT NAME:	· ·	52 nd Street	OU2			PROJECT	No.: <u>01</u>	3932-130	_
DATE OF WELL DEVE	LOPMENT:	9/	7/17	+ 9/11	17				
DEVELOPMENT CREV	V MEMBERS:	PG	DH						
Purging Method:		3" Submer	**						
SAMPLE NO.:		3"							
SAMPLE TIME:	50	6W-	091117	- PG -	09				
WELL INFORMATI	ION	<u>L</u>	7 1045		(GRAB)				
WELL NUMBER:		NW08-D							
WELL TYPE (diamet	ter/material)	4" / steel							
MEASURING POINT I	ELEVATION:	1098.72.							
STATIC WATER DEPT	т:	100=	80			ELEVATIO	on:		_
Воттом Дертн:		244				ELEVATIO	on:	<u>.</u>	-
WATER COLUMN LE	NGTH:	93	5 /	43.2					
SCREENED INTERVAL	:	224-244		1		1	FLOW	≈ 25	GPM
WELL VOLUME:	п.	93	1.65 (3	3) = 2	280.95 = 56	15			
Note: For 4-inc	h diameter well:		.66 gallons (= 56	, / T			
		1 meter =	z mers						1
		Units	2 inters 1	2	3	4	5	TOTAL/ AVERAGE]
				2		4	5	-	
TIME VOLUME PURGED (volume/total vol	lume):			2	3 50 165	220	5	-	
VOLUME PURGED	lume):	Units	1		50		5 275	-	
VOLUME PURGED (volume/total vo	·	Units	1 55	110	50		5 275	-	
VOLUME PURGED (volume/total volume/total volume):	(+/- 1 ^{of}):	<i>Units</i> Gal	1 55 8.27	110	50 163 7.32 82.7		5 275	-	
VOLUME PURGED (volume/total volume/total volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE	(+/- 1 ^{of}): (+/- 15%):	<i>Units</i> Gal	55 8.21 80.4	110 8.56 80.1	50 165 7.32		5 275	-	
VOLUME PURGED (volume/total volume/total volume/total volume/total volume/total volume/total volume/total ph/9-0.2): FIELD TEMPERATURE FIELD CONDUCTIVITY	(+/- 1 ^{of}): (+/- 15%):	<i>Units</i> Gal	55 8.21 80.4	110 8.56 80.1	50 163 7.32 82.7		275	-	
VOLUME PURGED (volume/total volume/total volume/total volume/total volume/total volume/total volume/total phi (+/-0.2): FIELD TEMPERATURE FIELD CONDUCTIVITY OXIDATION REDUCTION	(+/- 1 ^{of}): (+/- 15%):	<i>Units</i> Gal	55 8.21 80.4	110 8.56 80.1	50 163 7.32 82.7		275	-	
VOLUME PURGED (volume/total volume/total volume/total volume/total volume/total volume/total volume/total volume/total volume/total phi/energy field Conductivity Oxidation Reduction Dissolved Oxygen	(+/- 1 ^{of}): (+/- 15%):	<i>Units</i> Gal	55 8.21 80.4	110 8.56 80.1	50 163 7.32 82.7		275	-	
VOLUME PURGED (volume/total volume/total volume/total volume/total volume/total volume/total volume/total volume/total volume/total phickets of the period o	(+/- 1 ^{of}): (+/- 15%):	<i>Units</i> Gal	55 8.27 80.4 2058	110 8.56 80.1 2039	50 163 7.32 82.7 2446		275	-	
VOLUME PURGED (volume/total volume/total volume/total volume/total volume/total volume/total volume/total volume/total volume/total volume/total per purpose volume/total volu	(+/- 1 ^{of}): (+/- 15%):	<i>Units</i> Gal	1 55 8.27 80.4 2058 	110 8.56 80.1 2039	50 163 7.32 82.7 2446		275	-	
VOLUME PURGED (volume/total volume/total volume/total volume/total volume/total volume/total volume/total volume/total volume/total phickets phickets phickets productive color: Volume Purged purged purged purged phickets phickets product product purged	(+/- 1 ^{of}): (+/- 15%):	<i>Units</i> Gal	1 55 8.27 80.4 2058 SL.CLOUDY GRAY NONE -	110 8.56 80.1 2039 CLEAR CLEAR	50 163 7.32 82.7 2446	226	5 275	-	
VOLUME PURGED (volume/total volume/total volume/total volume/total volume/total volume/total volume/total volume/total volume/total volume/total per purposed Conductivity Oxidation Reduction Dissolved Oxygen Turbidity Clarity: Color: Odor:	(+/- 1 ^{of}): (+/- 15%):	<i>Units</i> Gal	1 55 8.27 80.4 2058 SL.CLOUDY GRAY NONE	110 8.56 80.1 2039	50 163 7.32 82.7 2446 Clear	226	275	-	

PROJECT NAME:	52 nd Street	t OU2		, ,	PROJECT	No.: 01	13932-130		
DATE OF WELL DEVELOPMENT:	9	11/17	+ 9/		_ 				
DEVELOPMENT CREW MEMBERS:	PO	5, DH							
PURGING METHOD:	3" Submer	sible			091317-26-16				
SAMPLE NO.:	40	- of	-1061	- 0913	17-76				
SAMPLE TIME:				0710					
WELL INFORMATION									
WELL NUMBER:	NW07-M								
WELL TYPE (diameter/material)	4" / steel								
MEASURING POINT ELEVATION:	1093.94 ft	·							
STATIC WATER DEPTH:	9	6 55			ELEVATIO	on:			
Воттом DEPTH:	200.5 ft.				ELEVATIO	on:			
WATER COLUMN LENGTH:	103	1.95			_		~ 3		
SCREENED INTERVAL:	180-200ft.			/	Flow	GPM	20		
WELL VOLUME:	67	98 (3)	= 20	3 94	5				
Note: For 4-inch diameter well:	1 foot = 1	foot = 0.66	gallons (us)						
	1 meter =	2 liters	2-	r ve					
	1 meter =	2 liters	2	3	4	5	TOTAL/ AVERAGE		
			Pump so	3 CAL AFTER	4	5	, ,		
TIME	UNITS	1	PUMP SO P WELL	GAL AFTER RECOVERY			, ,		
TIME VOLUME PURGED (volume/total volume):			Pump so	GAL AFTER	4	5	, ,		
VOLUME PURGED	UNITS	1	PUMP SO P WELL	GAL AFTER RECOVERY			, ,		
VOLUME PURGED (volume/total volume):	UNITS	1 40	PUMP SO PLUELL	GAL AFTER RECOVERY			, ,		
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2):	UNITS Gal	40	PUMP SU P WELL 80 7.40	GAL AFTER RECOVERY			, ,		
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°):	UNITS Gal	1 40 9.02 85. 9	7.40 86.7	GAL AFTER RECOVERY			, ,		
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%):	UNITS Gal	1 40 9.02 85. 9	7.40 86.7	GAL AFTER RECOVERY			, ,		
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL	UNITS Gal	1 40 9.02 85. 9	7.40 86.7	GAL AFTER RECOVERY			, ,		
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN	UNITS Gal	1 40 9.02 85. 9	7.40 86.7	GAL AFTER RECOVERY			, ,		
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY	UNITS Gal	1 40 9.02 85.9 1183	7.40 86.7	GAL AFTER RECOVERY			, ,		
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY:	UNITS Gal	1 40 9.02 85.9 1183	7.40 86.7	GAL AFTER RECOVERY			, ,		
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR: ODOR:	Gal	1 40 9.02 85.9 1183 CLEMR CLONR	7.40 86.7 1448	GAL AFTER RECOVERY			, ,		
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR: ODOR:	Gal	1 40 9.02 85.9 1183 CLEAR CLEAR CLEAR	PUMP SO P WELL 7.40 86.7 1448	CIAL AFTER RECOVERY 120	CAL.		AVERAGE		

PROJECT NAME:	52 nd Street	t OU2			PROJECT	No.: 0:	13932-130
DATE OF WELL DEVELOPMENT:	9	12/17					
DEVELOPMENT CREW MEMBERS:	P	ā . M.	HAGAN				
Purging Method:	3" Submer	,					
SAMPLE NO.:	6w - 6	091217 =	PG- 12	2			
SAMPLE TIME:	L>	080					
WELL INFORMATION							
WELL NUMBER:	NW05-S						
WELL TYPE (diameter/material)	4" / steel						
MEASURING POINT ELEVATION:	1099.98ft.						
STATIC WATER DEPTH:	105	32		ELEVATIO			
Воттом DEPTH:	128.5		1		ELEVATIO	n:	.
WATER COLUMN LENGTH:	23.	18 (.	654)			FLOW	~ 16P
SCREENED INTERVAL:	88-128	/\			1_		170
WELL VOLUME:	15.	159 (3)	= 45	.47	5	CHANGE 0.5	GPM @
Note: For 4-inch diameter well:		= 0.66 gallons (us) = 9.09 er = 2 liters				35	
	Units	1	2	3	4	5	TOTAL/ AVERAGE
TIME VOLUME PURGED	Gal	10	20	30	40	50	
(volume/total volume):	-	<u> </u>			, i		
		0 17	722	7 . 7	1027	1 36	
FIELD pH (+/-0.2):	oF	8.07	7.33	7.03	6.82	6.76	
FIELD TEMPERATURE (+/- 1°):	oF	61.4	80.9	815	82.2	813	
FIELD TEMPERATURE (+/- 1 ^{of}): FIELD CONDUCTIVITY (+/- 15%):	oF						
FIELD TEMPERATURE (+/- 1 ^{of}): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL	oF	61.4	80.9	815	82.2	813	
FIELD TEMPERATURE (+/- 1 ^{of}): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN	oF	61.4	80.9	815	82.2	813	
FIELD TEMPERATURE (+/- 10F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY	oF	2003	80.9	81.5 2309	82.2	2281	
FIELD TEMPERATURE (+/- 10F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY:	oF	2003 4. Clayor	2109	815	82.2	813 2281	
FIELD TEMPERATURE (+/- 10F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR:	oF	2003 L. CLOUPY ORANGE-191	2109	81.5 2309	82.2	813 2281 ——————————————————————————————————	
FIELD TEMPERATURE (+/- 10F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR: ODOR:	oF	2003 4. Clayor	2109	81.5 2309	82.2	813 2281	
FIELD TEMPERATURE (+/- 10F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR:	oF	SL. CLOUPY ORANGE-191	2109	81.5 2309	82.2	813 2281 ——————————————————————————————————	

PROJECT NAME:	52 nd Street	OU2			PROJECT	No.:	013932-130
DATE OF WELL DEVELOPMENT:	9/12	17	83-92	178		_	
DEVELOPMENT CREW MEMBERS:	PG	MH					
Purging Method:	3" Submer	sible					
SAMPLE NO.:	6w-0	91217-	PG-13				
SAMPLE TIME:	L->	1145		-2-2-22			
WELL INFORMATION							
WELL NUMBER:	NW07-D						
WELL TYPE (diameter/material)	4" / steel						
MEASURING POINT ELEVATION:	1094.21ft.						
STATIC WATER DEPTH:	100 .	11		ELEVATIO	ON:		
Воттом DEPTH:	236				ELEVATIO	ON:	
WATER COLUMN LENGTH:	135	.09 (.	654)				
SCREENED INTERVAL:	215-235		1.50		1	=10w =	25 spm
WELL VOLUME:	88.	349 (3) = 2	165 06	17/5		
Note: For 4-inch diameter well:	1 foot = 0.	.66 gallons (us)	ì			
	1 meter =	2 liters			8. (7.7
	1 meter =	2 liters 1	2	3	4	5	TOTAL/ AVERAGE
Tues		4 30	2	3	4	5	-
TIME VOLUME PURGED (volume/total volume):		4 30	108	3	216	5	-
VOLUME PURGED	Units	1					AVERAGE
VOLUME PURGED (volume/total volume):	Units	1	108	162	216	270	AVERAGE
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2):	UNITS Gal	1 54 8.20	108	162	216	270	AVERAGE
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/-1°F):	UNITS Gal	54 8.20 81.5	108 7.67 86.4	162 7.46 80.6	216 7.51 81.0	270 7.45 86.6	AVERAGE
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/-1°): FIELD CONDUCTIVITY (+/-15%):	UNITS Gal	54 8.20 81.5	108 7.67 86.4	162 7.46 80.6	216 7.51 81.0	270 7.45 86.6	AVERAGE
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/-1°): FIELD CONDUCTIVITY (+/-15%): OXIDATION REDUCTION POTENTIAL	UNITS Gal	54 8.20 81.5	108 7.67 86.4	162 7.46 80.6	216 7.51 81.0	270 7.45 86.6	AVERAGE
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/-1°): FIELD CONDUCTIVITY (+/-15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN	UNITS Gal	54 8.20 81.5	108 7.67 86.4	162 7.46 80.6	216 7.51 81.0	270 7.45 86.6	AVERAGE
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY	Gal	54 8.20 81.5	108 7.67 86.4 1410	162 7.46 80.6 1423	216 7.51 81.0	270 7.45 86.6	AVERAGE
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/-1°): FIELD CONDUCTIVITY (+/-15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY:	Gal of	54 8.20 81.5	108 7.67 86.4 1410	162 7.46 80.6 1423	216 7.51 81.0	270 7.45 86.6	AVERAGE
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/-10F): FIELD CONDUCTIVITY (+/-15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR:	Gal of SL. CLOUDY SL. GREY	54 8.20 81.5	108 7.67 86.4 1410	162 7.46 80.6 1423	216 7.51 81.0	270 7.45 86.6	AVERAGE
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/-1°): FIELD CONDUCTIVITY (+/-15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR: ODOR:	Gal of SL. CLOUDY SL. GREY	54 8.20 81.5	108 7.67 86.4 1410	162 7.46 80.6 1423	216 7.51 81.0	270 7.45 86.6	AVERAGE

PROJECT NAME:	52 nd Street	OU2		PROJECT	No.:	013932-130	
DATE OF WELL DEVELOPMENT:	09/12	/17					
DEVELOPMENT CREW MEMBERS:	MH.	PG					
Purging Method:	3" Submers	sible					
SAMPLE NO.:	GW-	091217	- PG-14	-091217-	PG-15		
SAMPLE TIME:	L	> 1440	- PG-14	15 1445			
WELL INFORMATION				(001)			
WELL NUMBER:	NW19-M						
WELL TYPE (diameter/material)	4" / steel						
MEASURING POINT ELEVATION:	1100.69 ft.						
STATIC WATER DEPTH:	164	.01		ELEVATIO	ON:		
Воттом DEPTH:	185.5 ft.				ELEVATIO	ON:	
WATER COLUMN LENGTH:	81.49	(.654)	= 53.7	29			
SCREENED INTERVAL:	165-185 ft.				Ę	Sgpm	
WELL VOLUME:	53	29(3)	= 159.88	3/5			
Note: For 4-inch diameter well:	1 foot = 1 1 meter =		gallons (us)	= 31.9-		T	TOTAL/
	UNITS	1	2	3	4	5	AVERAGE
TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY	Gal	32 7.30 84.6 1424	64 7.34 48824 1425	96 7.33 82.3 1422	128 7 3 3 8 6. 3 1422	160 7.36 81.5 1426	
CLARITY:	CLEAR					 √	
COLOR:	SL YELLOW						
ODOR:	NONE						
NOTES:							- 1
9			26.001 - 000 - 100 miles		200		

PROJECT NAME:	52 nd Street	OU2			PROJECT I	No.: 01	13932-130
DATE OF WELL DEVELOPMENT:		דו מן					· <u>-</u> ·
DEVELOPMENT CREW MEMBERS:		PG MH	1.				
Purging Method:	3" Submer	sible		· · · · · ·			
SAMPLE NO.:	GW-	091317	- PG-17				
SAMPLE TIME:		1045					
WELL INFORMATION							
WELL NUMBER:	NW09-D						
WELL TYPE (diameter/material)	4" / steel						
MEASURING POINT ELEVATION:	1099.58						
STATIC WATER DEPTH:	10	5 56			ELEVATIO	N:	
Воттом Дертн:	230 ft.				ELEVATIO	N:	
WATER COLUMN LENGTH:	124	.44 (.6	54) = 8	1384			
SCREENED INTERVAL:	210-230 ft					Flow:	3gpm
WELL VOLUME:	81	.384 (3	3) = 24	4.151/5			
Note: For 4-inch diameter well:	1 foot = 0	us)	3				
Note: Yor Y mor didirect. Veli:	1 meter =	2 liters	15791.2V3-	red N	9. 2.7.		
e control of the cont	1 meter =	2 liters 1	2	3	4	5	TOTAL/ AVERAGE
			2	3	4	5	•
TIME VOLUME PURGED (volume/total volume):			2	150	200	250	•
TIME VOLUME PURGED	Units	1					•
TIME VOLUME PURGED (volume/total volume):	Units	50	100	120	200	250	•
TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2):	Gal	50 8.20	100 7.93	150 7.79	200 7.56	250 7.\$1	
TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F):	Gal	50 8.26 82.0	100 7.93 81.9	156 7.79 82.3	200 7.56 82.7	250 7.57 82.5	
TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%):	Gal	50 8.26 82.0	100 7.93 81.9	156 7.79 82.3	200 7.56 82.7	250 7.57 82.5	•
TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL	Gal	50 8.26 82.0	100 7.93 81.9	156 7.79 82.3	200 7.56 82.7	250 7.57 82.5	•
TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN	Gal	50 8.26 82.0	100 7.93 81.9	156 7.79 82.3	200 7.56 82.7	250 7.57 82.5	
TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY	Gal	\$.26 82.0 1288	100 7.93 81.9	156 7.79 82.3	200 7.56 82.7	250 7.57 82.5	•
TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY:	Gal	\$.26 82.0 1288	100 7.93 81.9	156 7.79 82.3	200 7.56 82.7	250 7.57 82.5	
TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR:	Gal of CLEAR SL. YELIOW	\$.26 82.0 1288	100 7.93 81.9	156 7.79 82.3	200 7.56 82.7	250 7.57 82.5	•
TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR: ODOR:	Gal of CLEAR SL. YELIOW	\$.26 82.0 1288	100 7.93 81.9	156 7.79 82.3	200 7.56 82.7	250 7.57 82.5	

PROJECT NAME:	52 nd Street	OU2			Project	No.: 0	13932-130
DATE OF WELL DEVELOPMENT:							
DEVELOPMENT CREW MEMBERS:							
PURGING METHOD:	3" Submer	sible					
SAMPLE NO.:	Gw-	091317-	PG-18	, 64	J-091317	- PG-19	
SAMPLE TIME:	L	1200 1	كا دوم		5-091317 5-1330	,	
WELL INFORMATION		(BLAH	K)				
WELL NUMBER:	NW21-S						
WELL TYPE (diameter/material)	4" /PVC						
MEASURING POINT ELEVATION:	1108.6						
STATIC WATER DEPTH:	96	.29			ELEVATIO	n:	
Воттом DEPTH:	106 ft.				ELEVATIO	on:	
WATER COLUMN LENGTH:	9.71	(.634) = 6.3	5			
SCREENED INTERVAL:	91-106						
WELL VOLUME:	6.3	5 (3) =	19.65	1/5			
Note: For 4-inch diameter well:		foot = 0.66	gallons (us)	3-81			TOTAL/
	UNITS	1	2	3	4	5	AVERAGE
TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR: ODOR: NOTES:	Gal OF CLEAP CLEAP NOWE	4 7,59 99.3 1689	8 7.45 102.2 1694	7.53 98.4 1094	16 7.00 7.50 92.7 2221	20 *445 ⁹⁹ 85.3 2232	
W				2.70		222	

PROJECT NAME:	52 nd Street	OU2			PROJECT	No.: 01	13932-130
DATE OF WELL DEVELOPMENT:	-	7/14/17					
DEVELOPMENT CREW MEMBERS:	76	DH					
Purging Method:	3" Submer	sible					
SAMPLE NO.:	6W-0	61417- 1	6-20	, 6w-	061417-	P6-21	
SAMPLE TIME:	L>(0	646	1 20	<u></u>	0815		
WELL INFORMATION	R.B.						
	10						
WELL NUMBER:	NW#-D		· · · -				
WELL TYPE (diameter/material)	4" / steel						
MEASURING POINT ELEVATION:	1104.10 ft						
STATIC WATER DEPTH:		40			ELEVATIO		<u>. </u>
Воттом DEPTH:	230.5 ft.				ELEVATIO	N:	
WATER COLUMN LENGTH:	126	.10				FLOU	<i>≈</i> 30
	210-230 ft		/\		1		
SCREENED INTERVAL:			/ _ \	and the second	1 /		
SCREENED INTERVAL: WELL VOLUME:		32.46		247.4	•		
		32.46 foot = 0.66		,19	•		Toru/
WELL VOLUME:	1 foot = 1	32.46 foot = 0.66		,19	•	5	TOTAL/ AVERAGE
WELL VOLUME: Note: For 4-inch diameter well:	1 foot = 1 1 meter =	foot = 0.66; 2 liters	gallons (us)	49.	48	5	
WELL VOLUME: Note: For 4-inch diameter well: TIME VOLUME PURGED	1 foot = 1 1 meter =	foot = 0.66; 2 liters	gallons (us)	49.	48	5	
WELL VOLUME: Note: For 4-inch diameter well: TIME VOLUME PURGED (volume/total volume):	1 foot = 1 1 meter =	foot = 0.66 2 liters	gallons (us)	49	4 200	_	
WELL VOLUME: Note: For 4-inch diameter well: TIME VOLUME PURGED	1 foot = 1 1 meter =	foot = 0.66 2 liters	gallons (us)	3 150 7.37	4	250	
WELL VOLUME: Note: For 4-inch diameter well: TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2):	1 foot = 1 1 meter = UNITS Gal	foot = 0.66 2 liters 1 50 7.54	2 100 7.51	49. 3	200 7.32 79.0	260 7.30	
WELL VOLUME: Note: For 4-inch diameter well: TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 10F):	1 foot = 1 1 meter = UNITS Gal	foot = 0.66 2 liters 1 50 7.54 78.8	2 100 7.51 78.8	3 150 7.37 78.9	48 200 7.32	250 7.30 78.4	
WELL VOLUME: Note: For 4-inch diameter well: TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%):	1 foot = 1 1 meter = UNITS Gal	foot = 0.66 2 liters 1 50 7.54 78.8	2 100 7.51 78.8	3 150 7.37 78.9	200 7.32 79.0	250 7.30 78.4	
WELL VOLUME: Note: For 4-inch diameter well: TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL	1 foot = 1 1 meter = UNITS Gal	foot = 0.66 2 liters 1 50 7.54 78.8	2 100 7.51 78.8	3 150 7.37 78.9	200 7.32 79.0	250 7.30 78.4	
WELL VOLUME: Note: For 4-inch diameter well: TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1 ^{of}): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN	1 foot = 1 1 meter = UNITS Gal	foot = 0.66 2 liters 1 50 7.54 78.8	2 100 7.51 78.8	3 150 7.37 78.9	200 7.32 79.0	250 7.30 78.4	
WELL VOLUME: Note: For 4-inch diameter well: Time Volume Purged (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY	1 foot = 1 1 meter = UNITS Gal	foot = 0.66 = 2 liters 1 50 7.54 78.8 1281	2 100 7.51 78.8	3 150 7.37 78.9	200 7.32 79.0	250 7.30 78.4	
WELL VOLUME: Note: For 4-inch diameter well: Time Volume Purged (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY:	1 foot = 1 1 meter = UNITS Gal	foot = 0.66 2 liters 1 50 7.54 78.8 1281	2 100 7.51 78.8	3 150 7.37 78.9	200 7.32 79.0	250 7.30 78.4	

PROJECT NAME:	52 nd Street	t OU2			PROJECT	No.: 01	3932-130
DATE OF WELL DEVELOPMENT:	9	/14/17					
DEVELOPMENT CREW MEMBERS:	PC	6 PH					
PURGING METHOD:	3" Submer						
SAMPLE NO.:	GW -	091417	- PG - 2	22			
SAMPLE TIME:	L	▶ 1000					
WELL INFORMATION							
WELL NUMBER:	NW23-S						
WELL TYPE (diameter/material)	4" /PVC						
MEASURING POINT ELEVATION:	1103.10						
STATIC WATER DEPTH:	101	.55			ELEVATIO	on:	
Воттом DEPTH:	130 ft.				ELEVATIO)N:	
WATER COLUMN LENGTH:	2	28.45				Flou	1 € 15 G
SCREENED INTERVAL:	95-130	1	\		1-	7	
WELL VOLUME:	16	8.60 3	<u> </u>	55.81	15		
Note: For 4-inch diameter well:	1 foot = 1 1 meter =	. foot = 0.66 = 2 liters	gallons (us)	= 1	1.16		
	UNITS	1	2	3	4	5	TOTAL/ AVERAGE
			ł				1
TIME VOLUME PURGED (volume/total volume):	Gal	12	24	36	48	60	
VOLUME PURGED	Gal	12	24 6.92	36 6.97	48	60 4.98	
VOLUME PURGED (volume/total volume):	Gal	7.02		<u> </u>			
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2):		7.02	6.92	6.97	6.97	L-98	
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F):		7.02	6.92 83.1	6.97 82.8	6.97 82.1	4.98 81.5	
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%):		7.02	6.92 83.1	6.97 82.8	6.97 82.1	4.98 81.5	
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL		7.02 83.9 1504	6.92 83.1	6.97 82.8	6.97 82.1	4.98 81.5	
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN		7.02	6.92 83.1	6.97 82.8	6.97 82.1	4.98 81.5	
VOLUME PURGED (volume/total volume): FiELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY		7.02 83.9 1504	6.92 83.1	6.97 82.8	6.97 82.1	4.98 81.5	
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY:	of	7.02 83.9 1504	6.92 83.1	6.97 82.8	6.97 82.1	4.98 81.5	
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR:	Olean	7.02 83.9 1504	6.92 83.1	6.97 82.8	6.97 82.1	4.98 81.5	
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR: ODOR:	Olean	7.02 83.9 1504	6.92 83.1	6.97 82.8	6.97 82.1	4.98 81.5	
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR: ODOR:	Olean	7.02 83.9 1504	6.92 83.1	6.97 82.8	6.97 82.1	4.98 81.5	

PROJECT NAME:	52nd Street	OU2 /		PROJECT No.: 013932-13			
DATE OF WELL DEVELOPMENT:	9	14/17					
DEVELOPMENT CREW MEMBERS:	PG	DH					
PURGING METHOD:	3" Submer	sible					
SAMPLE NO.:	GW-	091417	- PG-	23			
SAMPLE TIME:	L	→ 1/20					
WELL INFORMATION							
WELL NUMBER:	NW01						
WELL TYPE (diameter/material)	4" / pvc						
MEASURING POINT ELEVATION:	1112.22 ft			-			
STATIC WATER DEPTH:	94	.10		ELEVATIO	N:		
Воттом Depth:	110 ft.			ELEVATIO	n:		
WATER COLUMN LENGTH:	15	,9					
SCREENED INTERVAL:	90-110 ft.	/			1		
WELL VOLUME:		. 39 3) =	31.19	5		
Note: For 4-inch diameter well:	1 foot = 0 1 meter =	.66 gallons (2 liters	us)	6.2			
	UNITS	1	2	3	4	5	TOTAL/ AVERAGE
TiME VOLUME PURGED (volume/total volume):	Gal	8	16	24	32	40	
FIELD pH (+/-0.2):		7.04	7.07	7.12	7.12	7.13	
FIELD TEMPERATURE (+/- 1°F):	oF	81.6	79.9	79.3	78.6	78.5	
FIELD CONDUCTIVITY (+/- 15%):		2209	2241	2235	2236	2238	
OXIDATION REDUCTION POTENTIAL			a supplied of the special supplied to the supplied of the supp	the same drops a second polymer was an analysis			
DISSOLVED OXYGEN							***
TURBIDITY	9						nag og
CLARITY:		CLOUDY				Claar	
COLOR:		ORANGE					
ODOR:		NONE					
NOTES:							
		- <u></u>	<u>.</u>	····			

PROJECT NAME:	52 nd Stree	OU2			PROJECT	No.:	013932-130
DATE OF WELL DEVELOPMENT:	9	14/17					
DEVELOPMENT CREW MEMBERS:	P6	DH					
PURGING METHOD:	3" Submer	sible					
SAMPLE NO.:	GW-	091417-	PG-24	GW.	- 091417 -> 1245	-16-2	:5
SAMPLE TIME:	<u></u>	> 1240		L	> 1245		
WELL INFORMATION							
WELL NUMBER:	NW25-S						
WELL TYPE (diameter/material)	4" /PVC						
MEASURING POINT ELEVATION:	1130.33						
STATIC WATER DEPTH:	84.	85			ELEVATIO	N:	
Воттом DEPTH:	115 ft.				ELEVATIO	N:	
WATER COLUMN LENGTH:	30	, 15					
SCREENED INTERVAL:	ę		1		/		
WELL VOLUME:	10	7:71 (3) =	69.15	/5		
Note: For 4-inch diameter well:	1 foot = 1 1 meter =	. foot = 0.66 : 2 liters			11:83	28.0V0 - 1	
	Units	1	2	3	4	5	TOTAL/ AVERAGE
TIME VOLUME PURGED (volume/total volume):	Gal	12	24	36	48	60	
FIELD pH (+/-0.2):		7.34	7.36	7.28	7.38	7.35	
FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1 ^{of}):	oF	7.34	7.36	7.28	7.30	7.35	
• • • •	oF					79.9	
FIELD TEMPERATURE (+/- 1°F):	oF	81.2	80.4	80 -1	80.2	7.35 79.9 2101	
FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%):	of	81.2	80.4	80 -1	80.2	79.9	
FIELD TEMPERATURE (+/- 1 ^{of}): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL	of	81.2	80.4	80 -1	80.2	79.9	
FIELD TEMPERATURE (+/- 1 ^{of}): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN	oF	81.2	80.4	80 -1	80.2	79.9	
FIELD TEMPERATURE (+/- 1 ^{of}): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY	oF	2088	80.4	2071	80.2	79.9	
FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY:	oF	81.2 2088 31. CLOUDY	80.4	2071	80.2	79.9	
FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR:	oF	81.2 2088 31. CLOUDY CLEAR	80.4	2071	80.2	79.9	
FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR: ODOR:	oF	81.2 2088 31. CLOUDY CLEAR	80.4	2071	80.2	79.9	
FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR: ODOR:	oF	81.2 2088 31. CLOUDY CLEAR	80.4	2071	80.2	79.9	

PROJECT NAME:	52 nd Stree	t OU2		PROJECT	No.: <u>0</u>	13932-130	
DATE OF WELL DEVELOPMENT:	9/	15/17	8874				
DEVELOPMENT CREW MEMBERS:	PG ,	DH					
Purging Method:	3" Submer	rsible					
SAMPLE NO.:	6W-	091517	-PG-	26			
SAMPLE TIME:	<u>L</u> 3	0745					
WELL INFORMATION							
WELL NUMBER:	NW11-M						
WELL TYPE (diameter/material)	4" / steel						
MEASURING POINT ELEVATION:	1097.59 ft	•					
STATIC WATER DEPTH:	103	.79			ELEVATIO	n:	==
Воттом DEPTH:	193.5 ft.	-			ELEVATIO	n:	
WATER COLUMN LENGTH:		9.71			El	00	3 GPM
SCREENED INTERVAL:	173-193 ft	1.				-000 2	<i>5 6/1</i>
WELL VOLUME:	58	-67 (3)	= 176.0	1/5			
Note: For 4-inch diameter well:	1 foot = 1 1 meter =	foot = 0.66 = 2 liters	gallons (us)	35	. L	Ι	TOTAL/
	UNITS	1	2	3	4	5	AVERAGE
TIME							
VOLUME PURGED (volume/total volume):	Gal	36	72	108	144	180	
FIELD pH (+/-0.2):		9.50	8.60	830	8.24	8.32	
FIELD TEMPERATURE (+/- 1°F):	oF	78.2	78.9	79.1	79.2	79.5	
FIELD CONDUCTIVITY (+/- 15%):		1263	1427	1490	1521	1413	
OXIDATION REDUCTION POTENTIAL							
DISSOLVED OXYGEN							
TURBIDITY							
CLARITY:		CLEAR					
COLOR:		CLEAR					
ODOR:	ļ	NONE					
NOTES:	L	+			7001020		
% -							74.5

PROJECT NAME:	52 nd Street	t OU2			PROJECT	No.: 01	3932-130
DATE OF WELL DEVELOPMENT:	9	118/17	W-30-67				
DEVELOPMENT CREW MEMBERS:	-	DH					
Purging Method:	3" Submer	rsible					
SAMPLE NO.:	GW - 0	091817- P	G-27	GW-	091817-	PG = 28	3
SAMPLE TIME:		0730		لح ا	0810	- PG = 21	
WELL INFORMATION	C	FIELD BL	ANK)				
WELL NUMBER:	NW23-D						
WELL TYPE (diameter/material)	4" /PVC						
MEASURING POINT ELEVATION:	1103.23						
STATIC WATER DEPTH:	102.	85			ELEVATIO	on:	
Воттом DEPTH:	217 ft.				ELEVATIO	on:	
WATER COLUMN LENGTH:	114.15						
						-10.	z 3
SCREENED INTERVAL:	177-217	/1		/	1	FLOW	2
WELL VOLUME:	74.	65 (3) foot = 0.66			5 479	FWW	
WELL VOLUME:	1 foot = 1 1 meter =	l foot = 0.66 = 2 liters	gallons (us)	= 40	4.79		TOTAL/
WELL VOLUME:	74. 1 foot = 1	l foot = 0.66		= 40		5	
WELL VOLUME: Note: For 4-inch diameter well:	1 foot = 1 1 meter =	l foot = 0.66 = 2 liters	gallons (us)	= 40	4.79		TOTAL/
WELL VOLUME: Note: For 4-inch diameter well: TIME VOLUME PURGED	1 foot = 1 1 meter =	l foot = 0.66 = 2 liters	gallons (us)	= 40	4.79		TOTAL/
WELL VOLUME: Note: For 4-inch diameter well: TIME VOLUME PURGED (volume/total volume):	1 foot = 1 1 meter =	foot = 0.66 = 2 liters	2 90 7.19	3 135 7. 32	4 180 7.28	5 225 7.30	TOTAL/
WELL VOLUME: Note: For 4-inch diameter well: TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2):	1 foot = 1 1 meter =	1 foot = 0.66 = 2 liters	gallons (us) 2	3 135 7. 32 78. 1	4 180	5 225	TOTAL/
WELL VOLUME: Note: For 4-inch diameter well: TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F):	1 foot = 1 1 meter =	1 46 7.38	2 90 7.19	3 135 7. 32	4 180 7.28	5 225 7.30	TOTAL/
WELL VOLUME: Note: For 4-inch diameter well: TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%):	1 foot = 1 1 meter =	1 46 7.38	gallons (us) 2 90 7.19 78.8	3 135 7. 32 78. 1	180 7.28 78.8	5 225 7.30 78.8	TOTAL/
WELL VOLUME: Note: For 4-inch diameter well: TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL	1 foot = 1 1 meter =	1 46 7.38	gallons (us) 2 90 7.19 78.8	3 135 7. 32 78. 1	180 7.28 78.8	5 225 7.30 78.8	TOTAL/
WELL VOLUME: Note: For 4-inch diameter well: TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN	1 foot = 1 1 meter =	1 46 7.38	gallons (us) 2 90 7.19 78.8	3 135 7. 32 78. 1	180 7.28 78.8	5 225 7.30 78.8	TOTAL/
WELL VOLUME: Note: For 4-inch diameter well: TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY	1 foot = 1 1 meter =	1 46 7.38	gallons (us) 2 90 7.19 78.8	3 135 7. 32 78. 1	180 7.28 78.8	5 225 7.30 78.8	TOTAL/
WELL VOLUME: Note: For 4-inch diameter well: TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY:	1 foot = 1 1 meter =	1 46 7.38 77.8	gallons (us) 2 90 7.19 78.8	3 135 7. 32 78. 1	180 7.28 78.8	5 225 7.30 78.8	TOTAL/
SCREENED INTERVAL: WELL VOLUME: Note: For 4-inch diameter well: TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR: ODOR:	1 foot = 1 1 meter =	1 46 7.38 77.8 1503 CLEAR	gallons (us) 2 90 7.19 78.8	3 135 7. 32 78. 1	180 7.28 78.8	5 225 7.30 78.8	TOTAL/

PROJECT NAME:	52 nd Street	OU2		1	PROJECT	No.: 01	.3932-130
DATE OF WELL DEVELOPMENT:	9/1	4/17	+ 9/	18/17			
DEVELOPMENT CREW MEMBERS:	P6	DH		100			
PURGING METHOD:	3" Submer	sible	31				
SAMPLE NO.:	OK	1- 0918	17 - PG	- 29			
SAMPLE TIME:	1	> 100	0				
WELL INFORMATION		(BA	HLER SAMPL	GRAI3)			
WELL NUMBER:	NW08-S						
WELL TYPE (diameter/material)	4" / steel						
MEASURING POINT ELEVATION:	1098.45ft.						
STATIC WATER DEPTH:	103.2	20			ELEVATION	ON:	
Воттом DEPTH:	150.5				ELEVATO	on:	
WATER COLUMN LENGTH:	47.3	30				Class	
SCREENED INTERVAL:	100-150	()				rww :	= 2 GPI
WELL VOLUME:	30.	93 (3)	= 92	. 80 5			
Note: For 4-inch diameter well:	1 foot = 0 1 meter =	.66 gallons (2 liters	us)	18 .50			TOTAL/
	Units	1	2	3	4	5	AVERAGE
				(BAILER)			1
TIME VOLUME PURGED (volume/total volume):	Gal	18	36	54	11	90	
FIELD pH (+/-0.2):		8.93	8.80	7.64			
FIELD TEMPERATURE (+/- 1°F):	oF	83.6	82.8	79.4			
FIELD CONDUCTIVITY (+/- 15%):		1322	1118	1708			
Oxidation Reduction Potential							
DISSOLVED OXYGEN							
TURBIDITY							
CLARITY:		Clean					
COLOR:							
ODOR:							
NOTES: OA	1 @	40	GA	7			
	6						
Q -4							
· ·	sence out of the			V 57 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7			

PROJECT NAME:	52 nd Street	OU2			Project I	No.: _	013932-130
DATE OF WELL DEVELOPMENT:	9/	18/17	- 1/22			_	
DEVELOPMENT CREW MEMBERS:	PG	DH					
PURGING METHOD:	3" Submers						
SAMPLE NO.:	4	19/17	ov-	091917-	PG = 31		
SAMPLE TIME:			トフ	0950			
WELL INFORMATION							
WELL NUMBER:	NW11-D						
WELL TYPE (diameter/material)	4" / steel						
MEASURING POINT ELEVATION:	1097.69 ft.						
STATIC WATER DEPTH:	104.00)			ELEVATIO	N:	
Воттом DEPTH:	230.5 ft.				ELEVATIO	N:	
WATER COLUMN LENGTH:	126	50					
SCREENED INTERVAL:	210-230 ft.		$\overline{}$		1		
WELL VOLUME:	83	2.73 ((3) =	248 1	9/5		
Note: For 4-inch diameter well:			gallons (us)	49	63		
Note: For 4-inch diameter well:	1 foot = 1 1 meter =		gallons (us)	3	4	5	TOTAL/ AVERAGE
Note: For 4-inch diameter well:	1 meter =	2 liters		3 APTER RE	4	5	
TIME Volume Purged	1 meter =	2 liters		3	4	5 250	
Note: For 4-inch diameter well: TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2):	1 meter =	2 liters 1	2	3 AFTER RE	4 OVERY 50 GAL		
TIME VOLUME PURGED (volume/total volume):	1 meter =	2 liters 1 50	2	3 APTER RE PURGE	4 OVERY 50 GAL		
TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2):	1 meter =	2 liters 1 50 8.04	100	APTER REPURGE	4 OVERY 50 GAL		
TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F):	1 meter =	2 liters 1 50 8.04 78.3	100 7.83 80.6	3 APTER RE PURGE 180 7.64 80.6	4 OVERY 50 GAL		
TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%):	1 meter =	2 liters 1 50 8.04 78.3	100 7.83 80.6	3 APTER RE PURGE 180 7.64 80.6	4 OVERY 50 GAL		
TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL	1 meter =	2 liters 1 50 8.04 78.3	100 7.83 80.6	3 APTER RE PURGE 180 7.64 80.6	4 OVERY 50 GAL		
TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1 ^{oF}): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN	1 meter =	2 liters 1 50 8.04 78.3	100 7.83 80.6	3 APTER RE PURGE 180 7.64 80.6	4 OVERY 50 GAL		
TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY	UNITS Gal of CLOUDY BLACK	2 liters 1 50 8.04 78.3 1263	100 7.83 80.6	3 AFTER REPURGE 180 7.64 80.6	4 OVERY 50 GAL		
TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY:	UNITS Gal of CLOUDY	2 liters 1 50 8.04 78.3 1263	100 7.83 80.6	3 AFTER REPURGE 180 7.64 80.6 1209	4 OVERY 50 GAL		
TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR: ODOR:	OF CLOUDY BLACK 15#	2 liters 1 50 8.04 78.3 1263 CKAR CKAR	100 7.83 80.6	AFTER REPURGE 180 7.64 80.6 1209 Clean Clan None	GOVERY 50 GAL 200		

PROJECT NAME:	52 nd Street	OU2			PROJECT	No.: 0	13932-130
DATE OF WELL DEVELOPMENT:		1/19/17				30	
DEVELOPMENT CREW MEMBERS:	PG	DH					
Purging Method:	3" Submer	sible					
SAMPLE NO.:	GW-	091917	- PG - 3	30			
SAMPLE TIME:	<u></u>	0815					
WELL INFORMATION		(N	IS/MSP)				
WELL NUMBER:	NW22-D						
WELL TYPE (diameter/material)	4" /PVC						
MEASURING POINT ELEVATION:	1101.33						
STATIC WATER DEPTH:	102.9	O			ELEVATIO	N:	
Воттом DEPTH:	195 ft.				ELEVATIO	N:	·-·
WATER COLUMN LENGTH:	-	92.10					
SCREENED INTERVAL:	160-170,	190-195	1		1		
WELL VOLUME:	. 60	0.23 (3) =	180.70	15		
Note: For 4-inch diameter well:	1 foot = 1 1 meter =	foot = 0.66 2 liters	gallons (us)	36.1	۷/		
	UNITS	1	2	3	4	5	TOTAL/ AVERAGE
TIME							
VOLUME PURGED (volume/total volume):	Gal -	37	74	111	148	185	
FIELD pH (+/-0.2):		7.52	7.50	7.48	7.46	7.52	
FIELD TEMPERATURE (+/- 1°F):	oF	76.4	76.5	76.6	74.6	76.5	
FIELD CONDUCTIVITY (+/- 15%):		1334	1364	1385	1381	1375	-
OXIDATION REDUCTION POTENTIAL							
DISSOLVED OXYGEN							
TURBIDITY							
CLARITY:		CLEAR					
Color:		CLEAR					
ODOR:		NONE					
Notes:	77						

PROJECT NAME:	52 nd Street	: 0U2			PROJECT	No.:	013932-130	
DATE OF WELL DEVELOPMENT:		9/19/17				_		
DEVELOPMENT CREW MEMBERS:	16	DH						
PURGING METHOD:	3" Submer	sible						
SAMPLE NO.:	GW	- 091917	- PG-	32				
SAMPLE TIME:	L-3	- 091917 > 133	5					
WELL INFORMATION								
WELL NUMBER:	NW06-D							
WELL TYPE (diameter/material)	4" / steel							
MEASURING POINT ELEVATION:	1096.92ft.	_						
STATIC WATER DEPTH:	103	.70			ELEVATIO	n:		
Воттом DEPTH:	201.5				ELEVATIO)N:		
WATER COLUMN LENGTH:		778				,	FL	
SCREENED INTERVAL:	181.5-201	.5		/ \		/		
WELL VOLUME:	_ 4	1.8.	3.96	3) = 1	91.88	15		
Note: For 4-inch diameter wo	ell: 1 foot = 0 1 meter =	.66 gallons (2 liters	us)		91.88 = 38	37		
							TOTAL/	
	Units	1	2	3	4	5	AVERAGE	_
Ther	Units	1	2	3	4	5		_
TIME VOLUME PURGED (volume/total volume):	UNITS Gal	40	80	120	160	200	AVERAGE	
VOLUME PURGED				120 7. 28	160		AVERAGE	
VOLUME PURGED (volume/total volume):		40	80	120	160	200	AVERAGE	
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2):	Gal	40 7.34	80 7.24	120 7. 28	160 7.24	200 7 4 7	AVERAGE	
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F):	Gal	40 7,34 82.7	80 7.24 81.4	120 7.28 80.5	160 7.24 81.0	200 747 79.7	AVERAGE	
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%):	Gal	40 7,34 82.7	80 7.24 81.4	120 7.28 80.5	160 7.24 81.0	200 747 79.7	AVERAGE	
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL	Gal	40 7,34 82.7	80 7.24 81.4	120 7.28 80.5	160 7.24 81.0	200 747 79.7	AVERAGE	
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN	Gal	40 7,34 82.7	80 7.24 81.4	120 7.28 80.5	160 7.24 81.0	200 747 79.7	AVERAGE	
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY	Gal	40 7.34 82.7 1700	80 7.24 81.4	120 7.28 80.5	160 7.24 81.0	200 747 79.7	AVERAGE	
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1 ^{oF}): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY:	Gal	40 7.34 82.7 1700	80 7.24 81.4	120 7.28 80.5	160 7.24 81.0	200 747 79.7	AVERAGE	
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 10F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR:	Gal	40 7.34 82.7 1700	80 7.24 81.4	120 7.28 80.5	160 7.24 81.0	200 747 79.7	AVERAGE	
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR: ODOR:	Gal	40 7.34 82.7 1700	80 7.24 81.4	120 7.28 80.5	160 7.24 81.0	200 747 79.7	AVERAGE	
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR: ODOR:	Gal	40 7.34 82.7 1700	80 7.24 81.4	120 7.28 80.5	160 7.24 81.0	200 747 79.7	AVERAGE	

PROJECT NAME:	52 nd Stree	t OU2	Contra		PROJECT	No.: 01	.3932-130
DATE OF WELL DEVELOPMENT:	A REPORT OF	9/19/1-	1				
DEVELOPMENT CREW MEMBERS:	7	G DH					
Purging Method:	3" Subme	rsible					
SAMPLE NO.:		091917 -		33 6	W-0919	17-PG	- 34
SAMPLE TIME:		1425		L> 15	10		
WELL INFORMATION		(RINSE I	BLANK)				
WELL NUMBER:	NW18-S						
WELL TYPE (diameter/material)	4" / steel		<u>.</u>				
MEASURING POINT ELEVATION:	1094.78 ft	t.					
STATIC WATER DEPTH:	102	90			ELEVATIO	n:	
Воттом Depth:	130.5 ft.				ELEVATIO	n:	
WATER COLUMN LENGTH:	27.	60				-/ m	~ ~
_	00 400 6					TLUW =	= 2 0
SCREENED INTERVAL:	90-130 ft.		41.000	_			
SCREENED INTERVAL: WELL VOLUME:	18 0	5 (3) =	54.15	10.83			
	18 0	5(3) = L foot = 0.66		10.83	ı		TOTAL
VELL VOLUME:	1 foot = 1	5(3) = L foot = 0.66		10.83	4	5	TOTAL/ AVERAGE
NELL VOLUME: Note: For 4-inch diameter well:	1 foot = 1 1 meter =	5 (3) = L foot = 0.66; = 2 liters	gallons (us)	10 83	4	5	•
NELL VOLUME: Note: For 4-inch diameter well: Time VOLUME PURGED	1 foot = 1 1 meter =	5 (3) = L foot = 0.66; = 2 liters	gallons (us)	10 83	4	5	•
WELL VOLUME: Note: For 4-inch diameter well: FIME VOLUME PURGED (volume/total volume):	1 foot = 1 1 meter = UNITS	5 (3) = L foot = 0.66 = 2 liters	gallons (us)	10.83		55 1.34	•
WELL VOLUME: Note: For 4-inch diameter well: FIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2):	1 foot = 1 1 meter =	5 (3) = L foot = 0.66 = 2 liters 1	gallons (us)	3 3 33	44	55	•
WELL VOLUME: Note: For 4-inch diameter well: FIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°):	1 foot = 1 1 meter = UNITS	5 (3) = L foot = 0.66 = 2 liters 1 // // 30	gallons (us) 2 2 7.23	3 3 33 7.28	44	55 1.34	•
NELL VOLUME: Note: For 4-inch diameter well: FIME VOLUME PURGED volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 15%):	1 foot = 1 1 meter = UNITS	1 foot = 0.66 = 2 liters 1 7.30 83,8	22 7.23 62.9	3 33 7.28 81.7	44 7-26 81.1	55 7.34 81.0	•
WELL VOLUME:	1 foot = 1 1 meter = UNITS	1 foot = 0.66 = 2 liters 1 7.30 83,8	22 7.23 62.9	3 33 7.28 81.7	44 7-26 81.1	55 7.34 81.0	•
Note: For 4-inch diameter well: Note: For 4-inch diameter well: FIME VOLUME PURGED VOLUME/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1 ^{of}): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL	1 foot = 1 1 meter = UNITS	1 foot = 0.66 = 2 liters 1 7.30 83,8	22 7.23 62.9	3 33 7.28 81.7	44 7-26 81.1	55 7.34 81.0	•
Nett Volume: Note: For 4-inch diameter well: Note: For 4-inch di	1 foot = 1 1 meter = UNITS	1 foot = 0.66 = 2 liters 1 7.30 83,8	22 7.23 62.9	3 33 7.28 81.7	44 7-26 81.1	55 7.34 81.0	•
Note: For 4-inch diameter well: Note: For 4-inch diameter well: FIELD PURGED volume): FIELD PH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): DXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN	1 foot = 1 1 meter = UNITS	1 (3) = 1. foot = 0.66 = 2 liters 1	22 7.23 62.9	3 33 7.28 81.7	44 7-26 81.1	55 7.34 81.0	•

PROJECT NAME:		52 nd Street	: OU2			PROJECT N	lo.: <u>0</u>	13932-130
DATE OF WELL DEVE	OPMENT:		9/19/	17				
DEVELOPMENT CREW	MEMBERS:	Pa	A, DH	1				
Purging Method:		3" Submer	sible	1	11 112			35
SAMPLE NO.:		GW	1. 09191	7 154	10 -> 00	LECT 6	W - 091	7
SAMPLE TIME:							(917-PG-35 SEAB-BALLER)
WELL INFORMATI	ON							
WELL NUMBER:		NW06-S						
WELL TYPE (diamet	er/material)	4" / steel						
MEASURING POINT E	LEVATION:	1096.82ft.						
STATIC WATER DEPT	н:	103.	60			ELEVATION	ı:	
Воттом Дертн:		130				ELEVATION	ı:	
WATER COLUMN LEN	істн:	26	40				- , . ,	. /
SCREENED INTERVAL:		89.5-129.5				F	-LOW	~ 1.2 GPM
WELL VOLUME:		17.	26 (3) :	= 51	79/5			
Note: For 4-incl	n diameter well:	1 foot = 0 1 meter =	.66 gallons (2 liters	us)	~ · 10 ·]	35		
		UNITS	1	2	3	4	5	TOTAL/ AVERAGE
		j.		EDADING				
TIME VOLUME PURGED (volume/total vol	ume):	Gal	//	202	33	44	55	
FIELD pH (+/-0.2):	·		8.24	7.34				
FIELD TEMPERATURE	(+/- 1 ^{of}):	oF	83.L	80.7				
FIELD CONDUCTIVITY	(+/- 15%):		1105	1294				
OXIDATION REDUCTIO	N POTENTIAL		-					
DISSOLVED OXYGEN						-		
TURBIDITY				- 197 8				
CLARITY:			CLERR	,			5 .	1
COLOR:		ô	CUATZ.	ï			-	
ODOR:			Norwa		, , , , , , , , , , , , , , , , , , , ,	:	4	
NOTES:	1120	WELL	PRY	P	20 6	AL	·X	
	1530		w: 104	4.3	WEL	L > 80	/ R	ECOVERED
			GRA B		WPLE	wl	BALLER	

PROJECT NAME:	52 nd Street	t OU2			PROJECT	No.: <u>01</u>	3932-130
DATE OF WELL DEVELOPMENT:	- 4		9/20				
DEVELOPMENT CREW MEMBERS:	P6	BH D	н '				
Purging Method:	3" Submer	rsible			an	1-09201	7-PG
SAMPLE NO.:	Que.				TALE		
SAMPLE TIME:		L> 095	0		KAN .		
WELL INFORMATION					1	=	
WELL NUMBER:	NW19-D						
WELL TYPE (diameter/material)	4" / steel						
MEASURING POINT ELEVATION:	1100.50 ft	•					
STATIC WATER DEPTH:	104.	.01			ELEVATIO	on:	
Воттом DEPTH:	220.5 ft.				ELEVATIO	on:	
WATER COLUMN LENGTH:	110	0.49	e 101010			· · · · · · · · · · · · · · · · · · ·	
SCREENED INTERVAL:	205-220.5	ft.			/	Flow 5	3.
	()	18 (3)	<u> </u>	228 55	15		9.
WELL VOLUME:	76.	10 (3)		2000 - 200			
WELL VOLUME: Note: For 4-inch diameter well:		foot = 0.66		45			
	1 foot = 1	foot = 0.66		45		5	TOTAL/ AVERAGE
Note: For 4-inch diameter well:	1 foot = 1 1 meter =	l foot = 0.66 = 2 liters	gallons (us)	45.	71	5	•
	1 foot = 1 1 meter =	l foot = 0.66 = 2 liters	gallons (us)	45.	71	5 225	•
Note: For 4-inch diameter well: TIME VOLUME PURGED	1 foot = 1 1 meter =	1 foot = 0.66 = 2 liters	gallons (us)	3 135 7.47	4		•
Note: For 4-inch diameter well: TIME VOLUME PURGED (volume/total volume):	1 foot = 1 1 meter =	foot = 0.66 = 2 liters 1	gallons (us)	3 135	71 4 180	225 7.45 78.3	•
Note: For 4-inch diameter well: TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2):	1 foot = 1 1 meter = UNITS	1 45 7.70	gallons (us) 2 90 7.53	3 135 7.47	180 7.46	225 7.45	•
Note: For 4-inch diameter well: TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°):	1 foot = 1 1 meter = UNITS	1 45 7.70 78.3	gallons (us) 2 90 7.53 78.7	3 135 7.47 78.5	180 7.40 78.8	225 7.45 78.3	•
Note: For 4-inch diameter well: TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%):	1 foot = 1 1 meter = UNITS	1 45 7.70 78.3	gallons (us) 2 90 7.53 78.7	3 135 7.47 78.5	180 7.40 78.8	225 7.45 78.3	•
Note: For 4-inch diameter well: TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL	1 foot = 1 1 meter = UNITS	1 45 7.70 78.3	gallons (us) 2 90 7.53 78.7	3 135 7.47 78.5	180 7.40 78.8	225 7.45 78.3	•
Note: For 4-inch diameter well: TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1 ^{of}): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN	1 foot = 1 1 meter = UNITS	1 45 7.70 78.3	gallons (us) 2 90 7.53 78.7	3 135 7.47 78.5	180 7.40 78.8	225 7.45 78.3	•
Note: For 4-inch diameter well: Time Volume Purged (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): Oxidation Reduction Potential Dissolved Oxygen Turbidity	1 foot = 1 1 meter = UNITS	1 45 7, 70 78,3	gallons (us) 2 90 7.53 78.7	3 135 7.47 78.5	180 7.40 78.8	225 7.45 78.3	•
Note: For 4-inch diameter well: TIME VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY:	1 foot = 1 1 meter = UNITS	1 45 7.70 78.3 1150	gallons (us) 2 90 7.53 78.7	3 135 7.47 78.5	180 7.40 78.8	225 7.45 78.3	•

PROJECT NAME:	52 nd Street	OU2			PROJECT	No.:	013932-130
DATE OF WELL DEVELOPMENT:		9/20/17					
DEVELOPMENT CREW MEMBERS:		PG, DH					
Purging Method:	3" Submer	sible					
SAMPLE NO.:	Gu	1-09201	7-16-	37			
SAMPLE TIME:		L> 115	5				
WELL INFORMATION							
WELL NUMBER:	NW22-S						
WELL TYPE (diameter/material)	<u>4"</u> /PVC						
MEASURING POINT ELEVATION:	1101.65						
STATIC WATER DEPTH:	101.	10			ELEVATIO	on:	
Воттом DEPTH:	130 ft.				ELEVATIO	on:	
WATER COLUMN LENGTH:	28	60					
SCREENED INTERVAL:	95-130	(/			
WELL VOLUME:	18	3 70 3) = 56	0.11/5			
Note: For 4-inch diameter well:	1 foot = 1 1 meter =		gallons (us)	11-2	2 2		<u> </u>
	UNITS	1	2	3	4	5	TOTAL/ AVERAGE
Tue							
TIME VOLUME PURGED (volume/total volume):	Gal	12	24	36	48	60	5
FIELD pH (+/-0.2):	5	7.10	7,2	7.3	7.26	7.29	
FIELD TEMPERATURE (+/- 1°F):	oF	84.6	81.5	80.3	80.7	79.8	}
FIELD CONDUCTIVITY (+/- 15%):		1744	1766	1769	1745	1790	
OXIDATION REDUCTION POTENTIAL				-			
DISSOLVED OXYGEN							
TURBIDITY							
CLARITY:	1	CLEAR					
COLOR:		CLEAR					
	10	NONE					
ODOR:		NONE					
Odor: Notes:		Nove					100 mm 100 mm 100 mm 100 mm 100 mm 100 mm 100 mm 100 mm 100 mm 100 mm 100 mm 100 mm 100 mm 100 mm 100 mm 100 mm
		Nove					

PROJECT NAME:	52 nd Street	OU2/			PROJECT	No.: 0:	13932-130
DATE OF WELL DEVELOPMENT:	9/	20/17	+	9 21 17			
DEVELOPMENT CREW MEMBERS:	PE	OH					
Purging Method:	3" Submer	sible					
SAMPLE NO.:	GW-	0921	17 - PG	- 38			
SAMPLE TIME:	1	-7 0	7/0				
WELL INFORMATION							
WELL NUMBER:	NW08-M						
WELL TYPE (diameter/material)	4" / steel						Ħ
MEASURING POINT ELEVATION:	1098.65ft						
STATIC WATER DEPTH:	102.	5			ELEVATIO	N:	
Воттом DEPTH:	202				ELEVATIO	N:	
WATER COLUMN LENGTH:	49	.95	- 4	ē.			
SCREENED INTERVAL:	175-195		1	10	/	FLOC	J 25 GPM
WELL VOLUME:	6	5.367 3	3 = 1	196-10	5	wL	*
Note: For 4-inch diameter well:	1 foot = 0 1 meter =	.66 gallons (2 liters	us)	= 39.	22	5244	
7. 7.	UNITS	1	2	3	4	5	TOTAL/ AVERAGE
			:	PURGE SE			
TIME VOLUME PURGED	Gal	40	80	120	ndo	269	
(volume/total volume): FIELD pH (+/-0.2):		8.84	8.69	7.62			
FIELD TEMPERATURE (+/- 1 ^{of}):	oF	83,0	84.4	77.Le			
FIELD CONDUCTIVITY (+/- 15%):		1181	1161	1352			
Oxidation Reduction Potential			net	1000			
DISSOLVED OXYGEN							
TURBIDITY							
CLARITY:		CLEHR		-			
COLOR:		CLEAR		 			
ODOR:		NONE		—			
Notes:	WEL		DRY	P	80	GAL	
	DTW: 10:		wer		1	RECOVEDE	7)
WILL	Collec	767.5	AMPLE	w	200 - 200	PROM	

PROJECT NAME:	52 nd Street	OU2			PROJECT	No.: _0	13932-130
DATE OF WELL DEVELOPMENT:	9	21/17					
DEVELOPMENT CREW MEMBERS:	PG	OH	(9)				
Purging Method:	3" Submer						
SAMPLE NO.:	GW-	192117-	PG- 30	1 6K	1-0921	17 - PG	5 = 40
SAMPLE TIME:		0825 FIELD A		L	-> 084	0	
WELL INFORMATION	(FIELD A	BLANK)				
WELL NUMBER:	NW03						
WELL TYPE (diameter/material)	4" / pvc						
MEASURING POINT ELEVATION:	1097.16 ft	•					
STATIC WATER DEPTH:	103	35			ELEVATIO	on:	
Воттом DEPTH:	140 ft.				ELEVATIO	on:	
WATER COLUMN LENGTH:	39	22					
SCREENED INTERVAL:	120-140 ft	\rightarrow					
WELL VOLUME:	25.	65 (3)	= 76.	95/5			
Note: For 4-inch diameter well:	1 foot = 0 1 meter =	.66 gallons (2 liters	us)	= 15.3	9		
	UNITS	1	2	3	4	5	TOTAL/ AVERAGE
			,				
TIME VOLUME PURGED (volume/total volume):	Gal	16	32	48	64	80	
FIELD pH (+/-0.2):		7.19	7.30	7.20	7.11	7.32	
- 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	oF	79.1			78.9		
FIELD TEMPERATURE (+/- 1 of):		11.4	78.6	78.6	70.1	78.2	
FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%):		1376	1391	1394	1385	1400	
							90.
FIELD CONDUCTIVITY (+/- 15%):							
FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL							
FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN							
FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY		1376					
FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY:		1376					
FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR:		1376 CLEAR CLEAR					
FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR: ODOR:		1376 CLEAR CLEAR					

PROJECT NAME:	52 nd Street	t OU2			PROJECT	No.: C	13932-130
DATE OF WELL DEVELOPMENT:	7	1/21/17		-			
DEVELOPMENT CREW MEMBERS:	Po	ā, DH					
Purging Method:	3" Submer						
SAMPLE NO.:	GW-	092117	- PG - L	 			
SAMPLE TIME:	L	-> 1010					
WELL INFORMATION		092117 -> 1010 (MS/M	SD)				
WELL NUMBER:	NW17-S						
WELL TYPE (diameter/material)	4" / steel						
MEASURING POINT ELEVATION:	1096.75 ft						
STATIC WATER DEPTH:		1.20			ELEVATIO	on:	
Воттом DEPTH:	145.5 ft.				ELEVATIO	n:	
WATER COLUMN LENGTH:	4	1.30					
SCREENED INTERVAL:	_130-145 ft	-	,				
WELL VOLUME:	27	01 (3) = 2	91.03	5		
Note: For 4-inch diameter well:	1 foot = 1 foot = 0.66 gallons (us) 1 meter = 2 liters						
	Units	1	2	3	4	5	TOTAL/ AVERAGE
Tues	Units	1	2	3	4	5	-
TIME VOLUME PURGED (volume/total volume):	UNITS Gal	1 /8	2 36	3	72	90	-
VOLUME PURGED						90	-
VOLUME PURGED (volume/total volume):		18	36	54	72		-
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2):	Gal	18	36 7.20	54 7.22	72 7.19 78.8	90 7.23	AVERAGE
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F):	Gal	18 7.16 79.2	36 7.20 78.9	54 7.22 79.0	72 7.19 78.8	90 7.23 78.4	AVERAGE
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%):	Gal	18 7.16 79.2	36 7.20 78.9	54 7.22 79.0	72 7.19 78.8	90 7.23 78.4	AVERAGE
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL	Gal	18 7.16 79.2	36 7.20 78.9	54 7.22 79.0	72 7.19 78.8	90 7.23 78.4	AVERAGE
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN	Gal	18 7.16 79.2	36 7.20 78.9	54 7.22 79.0	72 7.19 78.8	90 7.23 78.4	AVERAGE
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY	Gal	18 7.16 79.2 2047	36 7.20 78.9	54 7.22 79.0	72 7.19 78.8	90 7.23 78.4	AVERAGE
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY:	Gal	18 7.16 79.2 2047	36 7.20 78.9	54 7.22 79.0	72 7.19 78.8	90 7.23 78.4	AVERAGE
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR:	Gal	18 7.16 79.2 2047 CLEAR CLEAR	36 7.20 78.9	54 7.22 79.0	72 7.19 78.8	90 7.23 78.4	AVERAGE
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR: ODOR:	Gal	18 7.16 79.2 2047 CLEAR CLEAR	36 7.20 78.9	54 7.22 79.0	72 7.19 78.8	90 7.23 78.4	AVERAGE
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR: ODOR:	Gal	18 7.16 79.2 2047 CLEAR CLEAR	36 7.20 78.9	54 7.22 79.0	72 7.19 78.8	90 7.23 78.4	AVERAGE

PROJECT NAME:	52 nd Street	OU2			PROJECT	No.:	013932-130
DATE OF WELL DEVELOPMENT:	9	21/17					
DEVELOPMENT CREW MEMBERS:	Pe	DH					
PURGING METHOD:	3" Submer	sible					1.7
SAMPLE NO.:	GW	- 09211	7 - PG -	42 GW	1-09211 L> 12	7-PG	-43
SAMPLE TIME:		> 121	5		L> 12	220	
WELL INFORMATION					(Dup)	
WELL NUMBER:	NW24-S	<u>. </u>					
WELL TYPE (diameter/material)	4" /PVC						
MEASURING POINT ELEVATION:	1118.56						
STATIC WATER DEPTH:	78 3	5			ELEVATIO	N:	
Воттом DEPTH:	97 ft.				ELEVATIO	N:	
WATER COLUMN LENGTH:	18.	65					
SCREENED INTERVAL:	77-97		/	- 22			
WELL VOLUME:		2.197	3) =	36,50	1		
Note: For 4-inch diameter well:	1 foot = 1 1 meter =	foot = 0.66 2 liters	gallons (us)	= 7.	<i>3</i>		
	UNITS	1	2	3	4	5	TOTAL/ AVERAGE
3	1						
TIME VOLUME PURGED (volume/total volume):	Gal	10	20	30	40	50	
FIELD pH (+/-0.2):		7.45	7,40	7.35	77.44	7.40	
/ · / 40E)	oF	Τ .			2.4		
FIELD TEMPERATURE (+/- 1 ^{oF}):		81.6	80,9	79.9	79.9	79.8	
FIELD CONDUCTIVITY (+/- 15%):		81.6	1815	79.9 1825	79.9 1800	79.8 1804	
					 		
FIELD CONDUCTIVITY (+/- 15%):					 		
FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL					 		
FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN					 		
FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY		1860			 		
FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY:		1860 			 		
FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR: ODOR:		1860 CLEAR CLEAR			 		
FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR:		1860 CLEAR CLEAR			 		
FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR: ODOR:		1860 CLEAR CLEAR			 		

PROJECT NAME:	52 nd Street	OU2			PROJECT	No.:	013932-130
DATE OF WELL DEVELOPMENT:	-3						
DEVELOPMENT CREW MEMBERS:	P	6, DH					
Purging Method:	3" Submer						
SAMPLE NO.:	6W-	092117-	PG - 4	4			
SAMPLE TIME:	<u>_</u>	1330					
WELL INFORMATION							
WELL NUMBER:	EW03						
WELL TYPE (diameter/material)	4" /PVC/ S	S Screen					
MEASURING POINT ELEVATION:	1114.60 ft.						
STATIC WATER DEPTH:	75	5.00			ELEVATIO)N:	
Воттом DEPTH:	110 ft.				ELEVATIO)N:	
WATER COLUMN LENGTH:	35						
SCREENED INTERVAL:		()		/			
WELL VOLUME:	22.0	89 (3)	= 61	8.67	5		
Note: For 4-inch diameter well:	1 foot = 1 1 meter =	foot = 0.66 (2 liters			734	* 4.00	-
	Units	1	2	3	4	5	TOTAL/ AVERAGE
T							
TIME VOLUME PURGED (volume/total volume):	Gal	14	28	42	56	70	
FIELD pH (+/-0.2):		7.39	7.19	7.32	7.28	7.58	
FIELD TEMPERATURE (+/- 1°F):	oF	80.9	80.5	79.6	79.8	79.1	
FIELD CONDUCTIVITY (+/- 15%):		1589	1530	1536	1542	1540)
OXIDATION REDUCTION POTENTIAL							
DISSOLVED OXYGEN							
TURBIDITY							
CLARITY:		SL Count					
COLOR:		ORANGE					
ODOR:		NONE					
				1			
Notes:					8		
						•	

PROJECT NAME:	52 nd Street	OU2			PROJECT I	No.:	013932-130
DATE OF WELL DEVELOPMENT:	9/						
DEVELOPMENT CREW MEMBERS:	PG	DH					
Purging Method:	3" Submer	, sible					
SAMPLE NO.:	6W-09.	2217- PG	: 45	GW-09	72217- PO	5-46	
SAMPLE TIME:	6W-09.	0645	5	L-> 0	735		
WELL INFORMATION	(R.	\mathcal{B}_{+}					
WELL NUMBER:	NW24-D						
WELL TYPE (diameter/material)	4" /PVC						
MEASURING POINT ELEVATION:	1118.48						
STATIC WATER DEPTH:	78	. 30			ELEVATIO	n:	
Воттом DEPTH:	155 ft.				ELEVATIO	n:	
WATER COLUMN LENGTH:	76.	70					
SCREENED INTERVAL:	135-155				1		
WELL VOLUME:	50	0.16 (3) = 15	0.48	15		
Note: For 4-inch diameter well:	1 foot = 1 1 meter =	foot = 0.66 2 liters	gallons (us)	= 30			
	UNITS	1	2	3	4	5	TOTAL/ AVERAGE
					,		
TIME VOLUME PURGED (volume/total volume):	Gal	30	60	90	120	150	
FIELD pH (+/-0.2):		7.40	7.13	7.20	7.23	7.20	
FIELD TEMPERATURE (+/- 1°F):	oF	76.2	76.5	76.3	76.Z	75.9	
FIELD CONDUCTIVITY (+/- 15%):		1673	1693	1706	1698	1705	-
Oxidation Reduction Potential	J						
DISSOLVED OXYGEN							
TURBIDITY							
I OKOIDII I	7						
CLARITY:		CLEAR					
		CLEAR					
CLARITY:							
CLARITY: COLOR:		CLEAR					
CLARITY: COLOR: ODOR:		CLEAR					

PROJECT NAME:	52 nd Street	OU2			PROJECT	No.: _(13932-130
DATE OF WELL DEVELOPMENT:	9,	122/17					
DEVELOPMENT CREW MEMBERS:	PG	DH					
Purging Method:	-Dedicated	Pump	3" 6	RUNFOS			
SAMPLE NO.:	GW- 0	92217 - P	6-47	GW-0	92217-	PG - 4	8
SAMPLE TIME:	—>	0915 FIELD BI		L> 0	950		
WELL INFORMATION	(1	FIELD BI	ANK				
WELL NUMBER:	DM509						
WELL TYPE (diameter/material)	4" / PVC/S	S Screen		<u></u>			
MEASURING POINT ELEVATION:	1114.06 ft.						
STATIC WATER DEPTH:	74	80			ELEVATIO	N:	
Воттом DEPTH:	215 ft.	175			ELEVATIO	n:	
WATER COLUMN LENGTH:	100	20					
SCREENED INTERVAL:						17	
WELL VOLUME:	65	53(3)=	196.	59/5			
Note: For 4-inch diameter well:	1 foot = 1 1 meter =		gallons (us)	<i>≡</i> 39.3	318		
	UNITS	1	2	3	4	5	TOTAL/ AVERAGE
TIME							
VOLUME PURGED (volume/total volume):	Gal	40	80	120	160	200	
FIELD pH (+/-0.2):		7.22	7.02	7.25	7.34	7.40	
FIELD TEMPERATURE (+/- 1°F):	oF	77.8	77.9	78.8	78.2	78.5	
FIELD CONDUCTIVITY (+/- 15%):		1483	1499	1502	1513	1507	
OXIDATION REDUCTION POTENTIAL							
DISSOLVED OXYGEN							
TURBIDITY							
CLARITY:		CLEAR				_	
Color:		CLEAR					
ODOR:	Ĭ	NONE					
NOTES:	150	7	ir 2)				
le do della							

PROJECT NAME:	52 nd Street	: 0U2			PROJECT I	No.:	013932-130
DATE OF WELL DEVELOPMENT:	9/	25/17					
DEVELOPMENT CREW MEMBERS:		>G					
PURGING METHOD:	2" Submer						
SAMPLE NO.:	AKI- 0	92517-1	6-49	, G	N- 0925	17-PG	50
SAMPLE TIME:	LP	0840	con open		10		
WELL INFORMATION	(RINSE E	SLANK)				
WELL NUMBER:	NW13-M						
WELL TYPE (diameter/material)	2" / PVC						
MEASURING POINT ELEVATION:	1096.67 ft	<u></u>					
STATIC WATER DEPTH:	103.	92			ELEVATIO	n:	
Воттом DEPTH:	195 ft.				ELEVATIO	n:	
WATER COLUMN LENGTH:	91	. 08					
SCREENED INTERVAL:	175-195 ft	. /			/		
WELL VOLUME:	14.	93 (3)	= 44	1. 811	15		
Note: For 4-inch diameter well:	1 foot = 1 1 meter =	foot = 0.66 ; 2 liters	gallons (us)	= (8.96		
	Units	1	2	3	4	5	TOTAL/ AVERAGE
T							
TIME VOLUME PURGED (volume/total volume):	Gal	/0	20	30	40	50	
FIELD pH (+/-0.2):		7.24	7.21	7.18	7.16	7.21	
FIELD TEMPERATURE (+/- 1°F):	oF	78.9	79.7	79.8	79.9	80.4	
FIELD CONDUCTIVITY (+/- 15%):		1138	1133	1138	1/39	1124	
Oxidation Reduction Potential							
DISSOLVED OXYGEN	_						
TURBIDITY		The second secon	سننگ به دندسترین	+PErimon Coloringuisticage			
CLARITY:		SI. CLOUPY		CLEMP			
COLOR:		BROWN -		CLEAR			
ODOR:		NONE-	_1	NONE			
Notes:	CF CMF3						
· ·							

PROJECT NAME:	1	52 nd Street	: Ομ2			PROJECT	No.: _(013932-130
DATE OF WELL DEVELO	PMENT:	9/2	5/17					
DEVELOPMENT CREW N	TEMBERS:	16-	*					
PURGING METHOD:		2" Submer	sible	RENTAL				
SAMPLE NO.:	2.	6W-	092517-	PG-51				
SAMPLE TIME:			1330					
WELL INFORMATION	N							
WELL NUMBER:		NW14-M			.			
WELL TYPE (diameter	/material)	2" / PVC						
MEASURING POINT ELE	VATION:	1096.11 ft	•		_			
STATIC WATER DEPTH:		103	1.18			ELEVATIO	N:	
Воттом ОЕРТН:		195 ft.				ELEVATIO	N:	
WATER COLUMN LENGT	тн:	91	. 82					
SCREENED INTERVAL:	7.9	175-195 ft						
WELL VOLUME:); (2)	15.0	5 (3)=	45.17	75 5			
Note: For 4-inch o	diameter well:	1 foot = 1 1 meter =	foot = 0.66 2 liters	gallons (us)	-9.03	3		
		UNITS	1	2	3	4	5	TOTAL/ AVERAGE
Tues								
TIME VOLUME PURGED (volume/total volume	me):	Gal	10	20	30	40	50	
VOLUME PURGED	me):	Gal	7.10	20 7.16	30 7.11	40	50 7.15	
VOLUME PURGED (volume/total volume		Gal						
VOLUME PURGED (volume/total volume) FIELD pH (+/-0.2):	/- 1 ^{of}):		7.10	7.10	7.11	7.14	7.15	
VOLUME PURGED (volume/total volur FIELD pH (+/-0.2): FIELD TEMPERATURE (+	/- 1 ^{of}): ·/- 15%):		7.10	7.16	7.11	7.14	7.15	
VOLUME PURGED (volume/total volume) FIELD pH (+/-0.2): FIELD TEMPERATURE (+ FIELD CONDUCTIVITY (+	/- 1 ^{of}): ·/- 15%):		7.10	7.16	7.11	7.14	7.15	
VOLUME PURGED (volume/total volume/total volume/total volume/total volume/total volume/total volume/total volume/total volume/total ph/9.2): FIELD TEMPERATURE (+ FIELD CONDUCTIVITY (+ OXIDATION REDUCTION F	/- 1 ^{of}): ·/- 15%):		7.10	7.16	7.11	7.14	7.15	
VOLUME PURGED (volume/total volume/total volume/total volume/total volume/total volume/total volume/total volume/total volume/total phickets productivity (+ FIELD CONDUCTIVITY (+ OXIDATION REDUCTION FOR PURPLE PU	/- 1 ^{of}): ·/- 15%):		7.10 81.4 1222 51.60004	7.16	7.11	7.14	7.15	
VOLUME PURGED (volume/total volume/total vol	/- 1 ^{of}): ·/- 15%):		7.10	7.16	7.11 80.9 1221	7.14	7.15	
VOLUME PURGED (volume/total volume/total vol	/- 1 ^{of}): ·/- 15%):		7.10 81.4 1222 5L.CLOUDY-	7.16	7.11 80.9 1221	7.14	7.15	
VOLUME PURGED (volume/total volume/total vol	/- 1 ^{of}): ·/- 15%):		7.10 81.4 1222 51.6007- LIGHT ORANGE	7.16	7.11 80.9 1221	7.14	7.15	
VOLUME PURGED (volume/total volume/total vol	/- 1 ^{of}): ·/- 15%):		7.10 81.4 1222 51.6007- LIGHT ORANGE	7.16	7.11 80.9 1221	7.14	7.15	
VOLUME PURGED (volume/total volume/total vol	/- 1 ^{of}): ·/- 15%):		7.10 81.4 1222 51.6007- LIGHT ORANGE	7.16	7.11 80.9 1221	7.14	7.15	

PROJECT NAME:	52 nd Street	,	PROJECT No.: 01		013932-130		
DATE OF WELL DEVELOPMENT:	v <u></u>	17	East on 43				
DEVELOPMENT CREW MEMBERS:		16	**************************************				
PURGING METHOD:	2" Submer	sible					3.72
SAMPLE NO.:	_ 6W-	092617-	PG-52	GW-	09751	2-16	53_
SAMPLE TIME:	L>	1	0836	' At	>		
WELL INFORMATION	1						
WELL NUMBER:	NW13-D						
WELL TYPE (diameter/material)	2" / PVC						
MEASURING POINT ELEVATION:	1096.61 ft						
STATIC WATER DEPTH:	103	3.96			ELEVATIO	N:	
Воттом Дертн:	235 ft.				ELEVATIO	n:	<u> </u>
WATER COLUMN LENGTH:		31.04					
SCREENED INTERVAL:	215-235 ft		·				
WELL VOLUME:	21	49 (3)= 6	4.47/5			
Note: For 4-inch diameter well:	1 foot = 1 1 meter =	foot = 0.66 2 liters	galions (us)	12.8	9		
	Units	1	2	3	4	5	TOTAL/ AVERAGE
TIME							
VOLUME PURGED (volume/total volume):	Gal	13	26	39	52	65	5
VOLUME PURGED	Gal	13 7.52	7.36	39 7.38	52 7.34	65	
VOLUME PURGED (volume/total volume):	Gal					65	
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2):		7.52	7.36	7.38	7.34	65	
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F):		7.52	7.36	7.38	7.34	65	
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%):		7.52	7.36	7.38	7.34	65	
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL		7.52	7.36	7.38	7.34	65	
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN		7.52	7.36	7.38	7.34	65	
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY		7.52	7.36	7.38 77.7 1170	7.34	65	
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°F): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY:		7.52 76.0 1197 St. Clau04	7.36	7.38 77.7 1170	7.34	65	
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR:		7.52 76.0 1197 SL.Clui04 BROWN	7.36	7.38 77.7 1170	7.34	65	
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR: ODOR:		7.52 76.0 1197 SL.Clui04 BROWN	7.36	7.38 77.7 1170	7.34	65	
VOLUME PURGED (volume/total volume): FIELD pH (+/-0.2): FIELD TEMPERATURE (+/- 1°): FIELD CONDUCTIVITY (+/- 15%): OXIDATION REDUCTION POTENTIAL DISSOLVED OXYGEN TURBIDITY CLARITY: COLOR: ODOR:		7.52 76.0 1197 SL.Clui04 BROWN	7.36	7.38 77.7 1170	7.34	65	